【图论及其运用 — 电子科技大学】(六)第六章 平面图

一、平面图概念与性质

(一)、平面图的概念

图的平面性问题是图论典型问题之一。生活中许多问题都与该问题有关。




上面的例子都涉及同一个图论问题:能否把一个图画在平面上,使得边与边之间没有交叉?针对这一问题,我们引入如下概念

定义1 如果能把图 G G G画在平面上,使得除顶点外,边与边之间没有交叉,称 G G G 可嵌入平面,或称 G G G可平面图。可平面图 G G G的边不交叉的一种画法,称为 G G G的一种平面嵌入 G G G的平面嵌入表示的图称为平面图

由定义,图 G G G 的平面嵌入只是 G G G 的一种方式,它和 G G G 实际上是同一个图

注: (1) 可平面图概念和平面图概念有时可以等同看待;(2) 图的平面性问题主要涉及如下几个方面:1) 平面图的性质;2) 平面图的判定;3) 平面嵌入方法(平面性算法) ;4)涉及图的平面性问题的拓扑不变量。

(二)、平面图性质

定义2 (1) 一个平面图 G G G把平面分成若干连通片,这些连通片称为 G G G的区域,或 G G G的一个面。 G G G的面组成的集合用 Φ Φ Φ表示。( G G G是一个平面图, G G G将所嵌入的平面划分为若干个区域,每个区域的内部连同边界称为 G G G的面)

(2) 面积有限的区域称为平面图 G G G的内部面,否则称为 G G G的外部面或无限面。


f 1 f_1 f1 是一个环围成的区域, f 2 f_2 f2 是三条边组成的三角形区域, f 3 f_3 f3 由五条边围成, f 4 f_4 f4 是无限面,面无限大的

在上图 G G G中,共有 4 4 4个面。其中 f 4 f_4 f4是外部面,其余是内部面。 Φ = { f 1 , f 2 , f 3 , f 4 } Φ=\{f_1, f_2, f_3, f_4\} Φ={f1,f2,f3,f4}

在任何一个图中,均有且仅有一个无限面(外部面)

一个点组成的平面图,规定是只有一个无限面



(3) 在 G G G中,顶点和边都与某个给定区域关联的子图,称为该面的边界。某面 f f f 的边界中含有的边数(割边计算2次)称为该面 f f f 的次数, 记为 d e g ( f ) deg ( f ) deg(f)

在上图中,红色边在 G G G 中的导出子图为面 f 3 f_3 f3 的边界。 f 1 f_1 f1 是个环, f 2 f_2 f2 是三条边组成的三角形面, f 3 f_3 f3 有 4 条非割边,但是有一条割边,算两次、 f 4 f_4 f4 外部面看最外部的边界,环也是外部面的边界,还有一个割边

可以观察到,总次数是边数的二倍,总次数为 16,边数为 8,这个在所有图中都是成立的

1、平面图的次数公式

定理1 G = ( n , m ) G=(n, m) G=(n,m)是平面图,则:
∑ f ∈ Φ deg ⁡ ( f ) = 2 m \sum_{f\in\Phi}\deg(f)=2m fΦdeg(f)=2m
证明: G G G的任意一条边 e e e, 如果 e e e是某面割边,那么由面的次数定义,该边给 G G G的总次数贡献 2 2 2次;如果 e e e不是割边,那么,它必然是两个面的公共边,因此,由面的次数定义,它也给总次数贡献 2 2 2次。于是有:
∑ f ∈ ϕ deg ⁡ ( f ) = 2 m \sum_{f\in\phi}\deg(f)=2m fϕdeg(f)=2m

实际上就是,除了割边之外的一条边会关联两个面,而割边会计算两次。所以构建 f f f 的边的总次数,为边的两倍

2、平面图的欧拉公式

定理2(欧拉公式) G = ( n , m ) G=(n, m) G=(n,m)是连通平面图, ϕ \phi ϕ G G G的面数,则:
n − m + ϕ = 2 n-m+\phi=2 nm+ϕ=2

以下是书上的证明方法:(本人觉得说明得更好些)

下面是 PPT 上证明:

证明:
情形1,如果 G G G是树,那么 m = n − 1 , ϕ = 1 m=n-1, \phi=1 m=n1,ϕ=1(树只有一个外部面)。在这种情况下,容易验证,定理中的恒等式是成立的。
情形2, G G G不是树形的连通平面图。
假设在这种情形下,欧拉恒等式不成立。则存在一个含有最少边数的连通平面图 G G G, 使得它不满足欧拉恒等式。设这个最少边数连通平面图 G = ( n , m ) G=(n, m) G=(n,m), 面数为 ϕ \phi ϕ,则:
n − m + ϕ ≠ 2 n-m+\phi\neq2 nm+ϕ=2
因为 G G G不是树,所以存在非割边 e e e。显然, G − e G-e Ge是连通平面图,边数为 m − 1 m-1 m1, 顶点数为 n n n, 面数为 ϕ − 1 \phi-1 ϕ1
由最少性假设, G − e G-e Ge满足欧拉等式: n − ( m − 1 ) + ( ϕ − 1 ) = 2 n-(m-1)+(\phi-1)=2 n(m1)+(ϕ1)=2
化简得: n − m + ϕ ≠ 2 n-m+\phi\neq2 nm+ϕ=2 这是一个矛盾。
注: 该定理可以采用对面数 ϕ \phi ϕ作数学归纳证明。

一个可平面图有多种平面嵌入,但无论是何种平面嵌入,由定理 2 容易知道他们的面数是相等的。

3、欧拉公式的几个有趣推论

推论1 G G G是具有 ϕ \phi ϕ个面 k k k个连通分支的平面图,则:
n − m + ϕ = k + 1 n-m+\phi=k+1 nm+ϕ=k+1

证明: 对第 i ( 1 ≦ i ≦ k ) i (1≦i≦k) i(1ik)个分支来说,设顶点数为 n i n_i ni,边数为 m i m_i mi,面数为 ϕ \phi ϕ, 由欧拉公式: n i − m i + ϕ i = 2 n_i-m_i+\phi_i=2 nimi+ϕi=2
所以, ∑ i = 1 k ( n i − m i + ϕ i ) = 2 k \sum_{i=1}^k\left(n_i-m_i+\phi_i\right)=2k i=1k(nimi+ϕi)=2k
∑ i = 1 k n i − ∑ i = 1 k m i + ∑ i = 1 k ϕ i = 2 k \sum_{i=1}^kn_i-\sum_{i=1}^km_i+\sum_{i=1}^k\phi_i=2k i=1knii=1kmi+i=1kϕi=2k
而:
∑ i = 1 k n i = n      ∑ i = 1 k m i = m      ∑ i = 1 k ϕ i = ϕ + ( k − 1 )  这是因为外部面多计算了 (k - 1) 次 \sum_{i=1}^kn_i=n ~~~~ \sum_{i=1}^km_i=m ~~~~ \sum_{i=1}^k\phi_i=\phi+(k-1) \text{ 这是因为外部面多计算了 (k - 1) 次} i=1kni=n    i=1kmi=m    i=1kϕi=ϕ+(k1) 这是因为外部面多计算了 (k - 1) 
所以得:
n − m + ϕ = k + 1 n-m+\phi=k+1 nm+ϕ=k+1

推论2 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的连通平面图,如果对 G G G的每个面 f f f ,有: d e g ( f ) ≥ l ≥ 3 deg (f) ≥ l ≥3 deg(f)l3, 则:( l l l 可以看做是 G G G 中的一个圈的边长,即 d e g ( f ) ≥ l deg (f) ≥ l deg(f)l 表示 G G G 中所有圈的边长至少为 l l l
m ≤ l l − 2 ( n − 2 ) m\leq\frac l{l-2}(n-2) ml2l(n2)


注: (1)上面推论2也可以叙述为:
G = ( n , m ) G=(n, m) G=(n,m) 是连通图,如果: m > l l − 2 ( n − 2 ) m>\frac l{l-2}(n-2) m>l2l(n2) 则G是非可平面图。

(2) 推论2的条件是 G G G是平面图的必要条件,不是充分条件。


偶图一定不存在奇圈, 所以 K 3 , 3 K_{3,3} K3,3 没有长度小于 4 4 4 的圈


推论3 G G G是具有 n n n个点 m m m条边 ϕ \phi ϕ个面的简单平面图,若 n ≥ 3 n ≥ 3 n3,则:(每个面的次数一定满足 ≥ 3 ≥ 3 3,因为至少 3 条边才能围成一个圈)
m ≤ 3 n − 6 m\leq3n-6 m3n6


推论4 G G G是具有 n n n个点 m m m条边的连通平面图,若 G G G的每个圈均由长度是 l l l 的圈围成,则:
m ( l − 2 ) = l ( n − 2 ) m(l-2)=l(n-2) m(l2)=l(n2)

证明: 由次数公式,欧拉公式容易得证。将推论2中的不等式改为等式即可


推论5 G G G是具有 n n n个点 m m m条边的简单平面图,则: δ ≤ 5 \delta\leq5 δ5

定理3 一个连通平面图是 2 2 2连通的,当且仅当它的每个面的边界是圈。(了解)

2连通图中,没有环是一定没有割边的

推论6 若一个平面图是 2 2 2连通的,则它的每条边恰在两个面的边界上。(了解)

(三)、图的嵌入性问题简介(仅了解,属于扩展内容,但是是有必要了解的)

在图的平面嵌入的基础上,简单介绍:

1、曲面嵌入

1)、球面嵌入

定理4 G G G 可球面嵌入当且仅当 G G G 可平面嵌入。
在这里插入图片描述

2)、环面嵌入
环面的形状像一个汽车轮胎的表面。
在这里插入图片描述


在这里插入图片描述

3) 定向曲面嵌入
这是目前嵌入性问题研究热点。国内:刘彦佩,黄元秋等是从事该方向研究的代表。

2、图的3维空间嵌入

定理5 所有图均可嵌入 R 3 R^3 R3中。

证明: R 3 R^3 R3中作空间曲线:
l : { x = t y = t 2 z = t 3 \left.l:\left\{\begin{aligned}x&=t\\y&=t^2\\z&=t^3\end{aligned}\right.\right. l: xyz=t=t2=t3

把图 G G G的顶点放在该直线的不同位置,则 G G G的任意边不相交。

事实上,对处于曲线 l l l 上的任意 4 4 4个相异顶点,它们对应的参数值分别为: t 1 , t 2 , t 3 , t 4 t_1,t_2,t_3,t_4 t1,t2,t3,t4

因为:
∣ 1 t 1 t 1 2 t 1 3 1 t 2 t 2 2 t 2 3 1 t 3 t 3 2 t 3 3 1 t 4 t 4 2 t 4 3 ∣ ≠ 0 \begin{vmatrix}1&t_1&{t_1}^2&{t_1}^3\\1&{t_2}&{t_2}^2&{t_2}^3\\1&{t_3}&{t_3}^2&{t_3}^3\\1&{t_4}&{t_4}^2&{t_4}^3\end{vmatrix}\neq0 1111t1t2t3t4t12t22t32t42t13t23t33t43 =0

所以,上面 4 4 4点不共面。

(四)、凸多面体与平面图

一个多面体称为凸多面体,如果在体上任取两点,其连线均在体上。

凸多面体的一维骨架:把一个凸多面体压缩在平面上,得到一个对应的平面图,该平面图称为该凸多面体的一维骨架。
在这里插入图片描述

定理6 存在且只存在5种正多面体:它们是正四、六、八、十二、二十面体。

证明: 任取一个正 ϕ \phi ϕ面体,其顶点数、棱数分别是 n n n m m m。对应的一维骨架是一个每个面次数为 l l l ,顶点度数为 r r r的简单平面正则图 G G G.

在这里插入图片描述
在这里插入图片描述

二、特殊平面图与平面图的对偶图

(一)、特殊平面图

1、极大平面图及其性质

对于一个简单平面图来说,在不邻接顶点对间加边,当边数增加到一定数量时,就会变成非平面图。这样,就启发我们研究平面图的极图问题。

定义1 G G G是简单可平面图,如果 G G G K i ( 1 ≦ i ≦ 4 ) K_i (1≦i≦4) Ki(1i4), 或者在 G G G任意非邻接顶点间添加一条边后,得到的图均是非可平面图,则称 G G G极大可平面图。 极大可平面图的平面嵌入称为极大平面图。

第一个图是一个 K 4 K_4 K4 图,第二个图在任意两个顶点之间添加边,不会破坏平面性、第三个图在某些点连接后会导致边交叉


注: 只有在单图前提下才能定义极大平面图。(因为如果允许存在环,则无论在每个顶点画多少个环,都不影响其平面性)

引理 G G G是极大平面图,则 G G G必然连通;且若 G G G的阶数大于等于 3 3 3 n ≥ 3 n ≥ 3 n3),则 G G G无割边。

下面证明极大平面图的一个重要性质。


定理1 G G G是至少有 3 3 3个顶点的平面图,则 G G G是极大平面图,当且仅当 G G G的每个面的次数是 3 3 3且为单图。

注: 该定理可以简单记为是“极大平面图的三角形特征”,即每个面的边界是三角形。

注意: 为什么构造的 f f f 不能再内部添加边,就是因为我们需要保证 f f f 的次数大于等于 4,从而说明矛盾,从而必须在 f f f 内部添加边才行。

围绕极大性进行证明


推论: G G G n n n个点, m m m条边和 ϕ \phi ϕ个面的极大平面图,且 n ≥ 3 n≥3 n3.则:
(1) m = 3 n − 6 m=3n-6 m=3n6;
(2) ϕ = 2 n − 4 \phi=2n-4 ϕ=2n4.

注: 顶点数相同的极大平面图并不唯一。例如:

还在研究中的问题是:顶点数相同的极大平面图的个数和结构问题。

定义2 如果在不可平面图 G G G任意删去一条边所得的图为可平面图,则称 G G G极小不可平面图

例如 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3 均为极小不可平面图

2、极大外平面图及其性质

定义3 若一个可平面图 G G G存在一种平面嵌入,使得其所有顶点均在某个面的边界上,称该图为 外可平面图。外可平面图的一种外平面嵌入,称为外平面图

为什么第一个图是外可平面图呢,是因为可以同构出将所有点均在同一个平面上,如外平面图1和外平面图2,所有点均在同一面 f f f(实际上可以看成,是否可以把所有顶点排布在外平面的边界上)

注: 对外可平面图 G G G 来说,一定存在一种外平面嵌入,使得 G G G的顶点均在外部面的边界上 (如上图的外平面图2)。这由球极投影法可以说明。

下面研究极大外平面图的性质。

定义4 G G G是一个简单外可平面图,若在 G G G中任意不邻接顶点间添上一条边后, G G G成为非外可平面图,则称 G G G极大外可平面图。极大外可平面图的外平面嵌入,称为极大外平面图。(联系到极大图,一定都是简单图,不能有环,因为环可以无限加)

引理 G G G是一个连通简单外可平面图,则在 G G G中存在度数至多是2的顶点。(证明略)

定理2 G G G是一个有 n ( n ≥ 3 ) n (n≥3) n(n3)个点,且所有点均在外部面上的极大外平面图,则 G G G n − 2 n-2 n2个内部面。(考过这道题)

G G G 是极大外平面, G 1 G_1 G1 只是 G G G 去掉了外平面上的一个 2 度点,依然满足其他所有点在外部面上, G 1 G_1 G1 是极大外平面图,把这个点现在加回来,则多一条边,则面数 k − 2 + 1 k - 2 + 1 k2+1 也即,内部面为 ( k + 1 ) − 2 (k +1) - 2 (k+1)2,因为 G G G k + 1 k + 1 k+1 个点


定理3 G G G是一个有 n ( n ≥ 3 ) n (n≥3) n(n3) 个点,且所有点均在外部面上的外平面图,则 G G G是极大外平面图,当且仅当其外部面的边界是圈,内部面是三角形。

定理4 每个至少有7个顶点的外可平面图的补图不是外可平面图,且7是这个数目的最小者。(了解即可)

我们用枚举方法证明。

(二)、平面图的对偶图

1、对偶图的定义

定义4 给定平面图 G G G G G G的对偶图 G ∗ G^* G如下构造:

(1) 在 G G G的每个面 f i f_i fi内取一个点 v i ∗ v_i^* vi作为 G ∗ G^* G的一个顶点;

(2) 对 G G G的一条边 e e e, 若 e e e是面 f i f_i fi f j f_j fj 的公共边,则连接 v i ∗ v_i^* vi v j ∗ v_j^* vj,得 G ∗ G^* G 的边 v i ∗ v j ∗ v_i^*v_j^* vivj , 且 v i ∗ v j ∗ v_i^*v_j^* vivj e e e 相交;若 e e e 是面 f i f_i fi 中的割边(若 e e e 只在一个面 f i f_i fi 上时),则以 v i ∗ v_i^* vi 为顶点作环,得 G ∗ G^* G 的边 v i ∗ v i ∗ v_i^*v_i^* vivi,且让它与 e e e相交。(相当于考虑原图的每个边,如果这条边在两个面上,则连接这两个面,如果这个边仅在一个面上,则形成环,仅在一个面上的边通常是割边)

2、对偶图的性质

(1)、 G G G G ∗ G^* G的对应关系

  1. G ∗ G^* G的顶点数等于 G G G的面数;
  2. G ∗ G^* G的边数等于 G G G的边数;(因为每条边都考虑了在 G ∗ G^* G 中与之对应的每条边)
  3. G ∗ G^* G的面数等于 G G G的顶点数;
  4. d ( v ∗ ) = d e g ( f ) d (v^*)=deg( f ) d(v)=deg(f)

(2)、定理5
定理5 平面图 G G G的对偶图必然连通

(2) G G G是平面图,则 ( G ∗ ) ∗ ≅ G (G^*)^*\cong G (G)G 当且仅当 G G G是连通的。(习题第26题)

在这里插入图片描述

(3) 同构的平面图可以有不同构的对偶图。
在这里插入图片描述

第二次上交作业
第4章 习题4 :3,7,10,12.
第5章 习题5 :1,2,6,7,13,19。

三、平面图的判定与涉及平面性的不变量

(一)、平面图的判定

回顾:已经学过的判定



在本章第一次课中,我们已经明确:对于 3 3 3阶以上的具有 m m m条边的单图 G G G来说,如果 G G G满足如下条件之一: (1) m > 3 n − 6 m>3n-6 m>3n6; (2) K 5 K_5 K5 G G G的一个子图;(3) K 3 , 3 K_{3,3} K3,3 G G G的一个子图,那么, G G G是非可平面图。

K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3 均不是可平面图,这两个图被称为基本非平面图Kuratowaki图

但上面的条件仅为 G G G 是非可平面图的充分条件。

这次课要解决的问题是:给出判定一个图是否是可平面图的充分必要条件。

最早给出图的平面性判定充要条件的是波兰数学家库拉托斯基(30年代给出)。后来,美国数学家惠特尼,加拿大数学家托特,我国数学家吴文俊等都给出了不同的充要条件。

我们主要介绍波兰数学家库拉托斯基的结果。

1、相关概念

定义1 在图 G G G的边上插入一个新的 2 2 2 度顶点,使一条边分成两条边,称将图在 2 2 2 度顶点内扩充;去掉一个图的 2 2 2 度顶点,使关联它们的两条边合并成一条边,称将图 G G G 2 2 2 度顶点内收缩。

定义2 两个图 G 1 G_1 G1 G 2 G_2 G2说是同胚的,如果 G 1 ≅ G 2 G_1\cong G_2 G1G2,或者通过反复在 2 2 2 度顶点内扩充和收缩后能够变成一对同构的图。(或称为 G 1 G_1 G1 G 2 G_2 G2 2 2 2 度顶点内是同构的,同胚的两个图点数和边数可能都不一样

扩充和收缩不会改变这个图是否可平面,即一个图本身是可平面的,扩充 2 2 2 度顶点,仍然可平面,本身不是,扩充了仍然不是可平面的。收缩同理

注: 显然,图的平面性在同胚意义下不变。

定理1 (库拉托斯基定理) 图 G G G是可平面的,当且仅当它不含 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3同胚的子图。(只介绍此定理的结论与运用,证明不要求)


下面说不存在与 K 5 K_5 K5 同胚的子图,因为最大度为 4 的顶点才 4 个,是因为, K 5 K_5 K5 每个顶点度数为 4,共 5 个点,如何都不能通过 2 度扩张或收缩得到


定义3 给定图 G G G, 去掉 G G G中的环,用单边代替平行边(重边)而得到的图称为 G G G基础简单图

定理2 (1) 图 G G G是可平面的,当且仅当它的基础简单图是可平面的;(实际上就是说环和重边或叫平行边并不影响其平面性)
(2) 图 G G G是可平面图当且仅当 G G G的每个块是可平面图。(没有割点的图就是一个块)

意味着如果图 G G G 有割点,可以将图 G G G 分为多个块,分别对块进行平面性检查

定义3 u v uv uv 是简单图 G G G 的一条边。去掉该边,重合其端点,再删去由此产生的环和平行边(重边)。这一过程称为图 G G G初等收缩或图的边收缩运算。并记为 G / u v G/uv G/uv

G G G可收缩到 H H H,是指对 G G G通过一系列边收缩后可得到图 H H H

定理2 (瓦格纳定理): 简单图 G G G是可平面图当且仅当它不含有可收缩到 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3的子图。

定理3 至少有 9 9 9个顶点的简单可平面图的补图是不可平面的,而 9 9 9是这个数目中的最小的一个。(了解即可)


此题考过



(二)、涉及平面性的不变量(作为了解性内容)

我们将要讨论的问题是:如何刻画一个非可平面图与平面图之间的差距。只作简单介绍。

1、图的亏格

环柄:边交叉处建立的“立交桥”。通过它,让一条边经过 “桥下”,而另一条边经过“桥上”,从而把两条边在交叉处分开。
在这里插入图片描述

定义4 若通过加上 k k k个环柄可将图 G G G嵌入到球面,则 k k k的最小数目,称为 G G G的亏格,记为: γ ( G ) γ(G) γ(G)

定理4 对于一个亏格为 γ γ γ,有 n n n个顶点, m m m条边和 ϕ \phi ϕ个面的多面体,有:
n − m + ϕ = 2 − 2 γ n-m+\phi=2-2\gamma nm+ϕ=22γ

因多面体对应一个连通图,所以上面恒等式称为一般连通图的欧拉公式。

推论: G G G是一个有 n n n个点 m m m条边,亏格为 γ γ γ的连通图,则:

(1), γ ≥ 1 6 m − 1 2 ( n − 2 ) \gamma\geq\frac16m-\frac12(n-2) γ61m21(n2)
(2), 若  G 无 三角 形,则  : γ ≥ 1 4 m − 1 2 ( n − 2 ) \text{若 }G\text{无 三角 形,则 }:\quad\gamma\geq\frac14m-\frac12(n-2)  G 三角 , :γ41m21(n2)
(3), 若 G 每个面是三角形,则: m = 3 ( n − 2 + 2 γ ) \text{若}G\text{每个面是三角形,则:}m{=}3(n-2{+}2\gamma) G每个面是三角形,:m=3(n2+2γ)
(4), 若 G 每个面是四边形,则:  m = 2 ( n − 2 + 2 γ ) \text{若}G\text{每个面是四边形,则: }m{=}2(n-2{+}2\gamma) G每个面是四边形,m=2(n2+2γ)

在这里插入图片描述

对于完全图的亏格曾经是一个长期的,有趣的,困难的和成功的努力。1890年希伍德提出如下猜想:

γ ( K n ) = { ( n − 3 ) ( n − 4 ) 12 } ⋯ ( ∗ ) \gamma(K_n)=\left\{\frac{(n-3)(n-4)}{12}\right\}\cdots(*) γ(Kn)={12(n3)(n4)}()

希伍德由推论(1)证明了:
γ ( K n ) ≥ ( n − 3 ) ( n − 4 ) 12 \gamma(K_n)\geq\frac{(n-3)(n-4)}{12} γ(Kn)12(n3)(n4)

同时希伍德也证明了 γ ( K 7 ) = 1 γ(K_7)=1 γ(K7)=1.

1891年,赫夫曼对n= 8—12 进行了证明;

1952年,林格尔对n= 13 进行了证明;

记阶数 n = 12 s + r n=12s+r n=12s+r

1954年,林格尔对 r = 5 r= 5 r=5 进行了证明;

1961–65年,林格尔对 r = 7 、 10 、 3 r= 7、10、3 r=7103 进行了证明;

1961–65年,杨斯、台里等对r= 4、0、1、9、6 进行了证明;

1967–68年,林格尔、杨斯对r= 2、8、11进行了证明;

1968年后,法国蒙特派列尔大学文学教授杰恩对n=18、20、23进行了证明.

对于完全双图,结果由林格尔独立得到。

定理5 m , n m, n m,n是正整数,则:
γ ( K n ) = { ( n − 3 ) ( n − 4 ) 12 }             γ ( K m , n ) = { ( m − 3 ) ( n − 2 ) 4 } \gamma(K_n)=\left\{\frac{(n-3)(n-4)}{12}\right\} ~~~~~~~~~~~ \gamma(K_{m,n})=\left\{\frac{(m-3)(n-2)}4\right\} γ(Kn)={12(n3)(n4)}           γ(Km,n)={4(m3)(n2)}

2、图的厚度

定义5 若图 G G G k k k个可平面子图的并等于 G G G,则称 k k k的最小值为 G G G的厚度,记为 θ ( G ) \theta(G) θ(G)

定理6 (1)若 n ≠ 4 ( m o d 6 ) 或 n ≠ 9 n\neq4({\mathrm{mod}}6)\text{或}n\neq9 n=4(mod6)n=9,则: θ ( K n ) = ⌊ n + 7 6 ⌋ \theta(K_n)=\left\lfloor\frac{n+7}6\right\rfloor θ(Kn)=6n+7

(2) θ ( K m , n ) = ⌊ m n 2 ( m + n − 2 ) ⌋ \theta(K_{m,n})=\left\lfloor\frac{mn}{2(m+n-2)}\right\rfloor θ(Km,n)=2(m+n2)mn

(3) 对任意的单图G=(n, m),有: θ ≥ m 3 n − 6 \theta\geq\frac m{3n-6} θ3n6m

3、图的糙度

定义6 图G中边不相交的不可平面子图的最多数目称为
G的糙度,记为: ξ ( G ) \xi(G) ξ(G)

定理7 完全图的糙度由下式给出:
在这里插入图片描述

ξ ( K 3 n + 1 ) = ( n 2 ) + 2 ⌊ n 3 ⌋ \xi\left(K_{3n+1}\right)={\binom n2}+2{\left\lfloor\frac n3\right\rfloor} ξ(K3n+1)=(2n)+23n
(3n+1≥19并且3n+1≠9r+7,其中r为面数);

ξ ( K 3 n + 2 ) = ( n 2 ) + ⌊ 14 n + 1 15 ⌋ \xi(K_{3n+2})=\binom n2+\left\lfloor\frac{14n+1}{15}\right\rfloor ξ(K3n+2)=(2n)+1514n+1

定义8 将G画在平面上时相交的边对的最少数目称为G的叉数,记为 η (G ) \text{η (G )} η (G )

定理9
η ( K n ) ≤ 1 4 ⌈ n 2 ⌉ ⌈ n − 1 2 ⌉ ⌈ n − 2 2 ⌉ ⌈ n − 3 2 ⌉ \eta(K_n){\leq}\frac14{\left\lceil\frac n2\right\rceil}{\left\lceil\frac{n-1}2\right\rceil}{\left\lceil\frac{n-2}2\right\rceil}{\left\lceil\frac{n-3}2\right\rceil} η(Kn)412n2n12n22n3

η ( K m , n ) ≤ ⌈ m 2 ⌉ ⌈ m − 1 2 ⌉ ⌈ n 2 ⌉ ⌈ n − 1 2 ⌉ \eta(K_{m,n})\leq\left\lceil\frac m2\right\rceil\left\lceil\frac{m-1}2\right\rceil\left\lceil\frac n2\right\rceil\left\lceil\frac{n-1}2\right\rceil η(Km,n)2m2m12n2n1

P143—146 习题5 :6,7,8,11、12。

四、平面性算法(重点)

(一)、涉及算法的相关概念

关于图的平面性问题,我们已经建立了一些平面性判定方法:

(1) 对于简单图 G = ( n , m ) G=(n, m) G=(n,m),如果 m > 3 n − 6 m>3n-6 m>3n6,则 G G G是非可平面的;

(2) 对于简单连通图 G = ( n , m ) G=(n, m) G=(n,m),如果每个面次数至少为 l ≥ 3 l≥3 l3,且 m > ( n − 2 ) l ( l − 2 ) m>\frac{(n-2)l}{(l-2)} m>(l2)(n2)l,则 G G G是非可平面的;

(3) 库拉托斯基定理: G G G是可平面的当且仅当 G G G不含有与 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3同胚的子图;

(4) 瓦格纳定理: G G G是可平面的当且仅当 G G G不含有能够收缩成 K 5 K_5 K5 K 3 , 3 K_{3,3} K3,3的子图;

上面的判定方法,局限性很大。这次课我们将给出一个算法,其作用是:如果 G G G非可平面,通过算法可以得到判定;如果 G G G是可平面图,通过算法,可以给出一种平面嵌入形式。

定义1 H H H G G G的一个子图,在 E ( G ) − E ( H ) E(G)-E(H) E(G)E(H)中定义一个二元关系 “~”:

∀ e 1 , e 2 ∈ E ( G ) − E ( H ) , e 1 ∼ e 2 当且仅当存在一条途径 W ,  使得 : \forall e_1,e_2\in E(G)-E(H),e_1\thicksim e_2\text{当且仅当存在一条途径} W,\text{ 使得}: e1,e2E(G)E(H),e1e2当且仅当存在一条途径W, 使得:

(1) e 1 e_1 e1 e 2 e_2 e2分别是 W W W的始边和终边,且

(2) W W W H H H 是内部不相交的。(即 W W W 的内部顶点,均不是 H H H 的顶点)

注意: 下图标出的 e i e_i ei 均为白色边

如图假设红边构成图 H H H,全部边构成 G G G,则 E ( G ) − E ( H ) E(G)-E(H) E(G)E(H) 由图中白色边组成, e 1 e 3 e_1e_3 e1e3 满足条件,而 e 1 e 4 e_1e_4 e1e4 不满足条件。

容易验证 “~” 具有自反性,对称性和传递性,从而是 E ( G ) \ E ( H ) E(G) \backslash E(H) E(G)\E(H) 上的一个等价关系。此等价关系的等价类导出的 G − E ( H ) G-E(H) GE(H) 的子图称为 H H H 中的。桥与 H H H 的公共顶点称为附着顶点。 (这里的等价类用人话说就是上图中在同一二元关系里面的集合,组成一个等价类,如 e 1 , e 2 , e 3 e_1, e_2, e_3 e1,e2,e3 两两相互之间满足二元关系,所以是一个等价类。而 e 4 e_4 e4 e 1 , e 5 e_1, e_5 e1,e5 均不满足二元关系,所以 e 4 e_4 e4 自身是一个等价类,同理 )

定义2 B B B E ( G ) − E ( H ) E(G)-E(H) E(G)E(H)关于二元关系“ ~” 的等价类在 G G G中的边导出子图,则称 B B B G G G关于子图 H H H的一座桥。桥与 H H H的公共顶点称为桥 B B B H H H中的附着顶点。

如下图 e 1 , e 2 , e 3 e_1, e_2, e_3 e1,e2,e3 相互满足二元关系, e 4 e_4 e4 与自身满足二元关系, e 5 e_5 e5 与自身满足二元关系, e 6 , e 7 e_6, e_7 e6,e7 满足二元关系,所以存在四个等价类,分别为 { e 1 , e 2 , e 3 } \{e_1, e_2, e_3\} {e1,e2,e3} { e 4 } \{e_4\} {e4} { e 5 } \{e_5\} {e5} { e 6 , e 7 } \{e_6, e_7\} {e6,e7},等价类的边导出子图,即为桥,所以有四个桥,而这些桥中,与 H H H 有公共点的那些顶点,叫附着顶点。

定义3 H H H是图 G G G的可平面子图, H ~ \tilde{H} H~ H H H的一种平面嵌入。若 G G G也是可平面图,且存在 G G G的一个平面嵌入 G ~ \tilde{G} G~,使得: H ~ ⊆ G ~ \tilde{H}\subseteq\tilde{G} H~G~ H ~ \tilde{H} H~ G G G容许的。


G G G 中,把那条白色边拉出来如 G ~ \tilde{G} G~ 中虚白线所示,而 H ~ \tilde{H} H~ 是红线部分, G ~ \tilde{G} G~ H ~ \tilde{H} H~ 的基础上多了一条白虚线,满足两个都存在平面嵌入,且 H ~ ⊆ G ~ \tilde{H}\subseteq\tilde{G} H~G~,即 H ~ \tilde{H} H~ G G G容许的。(注意 H ~ \tilde{H} H~ 定下来在判定的时候就不能变动了,边也不能拉缩,因为改动了,就不是 H ~ \tilde{H} H~ 了)


白色那条边无论怎么动,都会和红色线边交叉(注意红色线不能动,因为动了,就不是 H ~ \tilde{H} H~ 了)


定义4 B B B G G G 中子图 H H H 的任意一座桥,若 B B B H H H 的所有附着顶点都位于 H ~ \tilde{H} H~ 的某个面 f f f 的边界上,则称 B B B 在面 f f f 内可画入,否则,称 B B B在面 f f f 内不可画入。

对于 G G G的桥 B B B,令: F ( B , H ~ ) = { f ∣ f 是 H ~ 的面,且 B 在 f 内可画入 } \color{red} F(B,\tilde{H})=\left\{\left.f\right|f\text{是}\tilde{H}\text{的面,且}B\text{在}f\text{内可画入}\right\} F(B,H~)={ffH~的面,Bf内可画入}


红色边为 H ~ \tilde{H} H~, H ~ \tilde{H} H~ 的面为 f 1 f_1 f1 四边形, f 2 f_2 f2 六边形,外部面 f 3 f_3 f3

注意除 H ~ \tilde{H} H~ 中边以外的边才能组成桥,桥 B 1 B_1 B1 为浅蓝色边组成,桥 B 2 B_2 B2 为黄色边,桥 B 3 B_3 B3为白色边组成

找每个桥的所有附着顶点,所有附着顶点在同一面上,则称可画入这个面,如 B 1 B_1 B1 共三个点,但只有一个附着点,这个附着顶点同时在面 f 2 , f 3 f_2, f_3 f2,f3 上,所以 B 1 B_1 B1 可画入到 f 2 , f 3 f_2, f_3 f2,f3 这两个面上,即 F ( B 1 , H ~ ) = { f 2 , f 3 } F(B_1,\tilde{H})=\begin{Bmatrix}f_2,f_3\end{Bmatrix} F(B1,H~)={f2,f3}

B 2 B_2 B2 有三个附着顶点,其中两个在 f 2 f_2 f2 上,一个在 f 1 f_1 f1 上,但是三个点都属于 f 3 f_3 f3,所以 F ( B 2 , H ~ ) = { f 3 } F(B_2,\tilde{H})=\begin{Bmatrix}f_3\end{Bmatrix} F(B2,H~)={f3}


定理1 H ~ \tilde{H} H~ G G G 容许的,则对于 H H H 的每座桥 B B B F ( B , H ~ ) ≠ Φ F(B,\tilde{H})\neq\Phi F(B,H~)=Φ

注: 定理1实际上给出了一个图是可平面图的一个必要条件。这个必要条件表明:如果存在 G G G的一个可平面子图 H H H,使得对于某桥 B B B,有 F ( B , H ~ ) = Φ F(B,\tilde{H}){=}\Phi F(B,H~)=Φ ,那么, G G G是非可平面的。

根据上面的结论:我们可以按如下方式来考虑 G G G的平面性问题:


(二)、平面性算法

1964年,德穆克龙(Demoucron), 莫尔根思(Mlgrance)和珀特维斯(Pertuiset)提出了下面的平面性算法,简称DMP算法。






说明:习题6的1----9题比较简单,要求自己独立完成。没有讲到的习题,作为参考。

P143—146 习题6 :1----9

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值