如何看待向量之间的叉乘和点乘
首先明显的区别在于:两个向量点乘的结果是一个标量,而两个向量叉乘的结果则还是一个向量。如下面的例子:
点乘:
向量a = (a1, a2, a3), 是一个1行3列的向量。向量b=(b1, 是一个3行1列的向量。两者点乘的结果为 a1b1+a2b2+a3b3(若我们这里
b2,
b3)
将a1,a2,a3,b1,b2,b3全部赋值为1,那么向量a 点乘 向量b = 1 + 1 + 1 = 3,是一个标量)
叉乘:
向量a = (a1, a2, a3), 是一个1行3列的向量。向量b=(b1, b2, b3)同样是一个1行3列的向量。两者叉乘的结果如下:
向量a 叉乘 向量b =
解上面的行列式可以得到:向量a 叉乘 向量b = (a2*b3-a3*b2)i + (a3*b1-a1*b3)j + (a1*b2 - a2*b1)k,这里的i = (1,0,0),j=(0,1,0), k=(0,0,1), 所以最后向量a 叉乘 向量b = (a2*b3-a3*b2,a3*b1-a1*b3,a1*b2 - a2*b1),是一个向量。