如何利用 GPU 增强 Pandas 的能力,介绍了英伟达™(NVIDIA®)Pandas 加速框架 cuDF。
摘要
Pandas 是数据分析和机器学习工作中的重要工具,但在处理大型数据集时效率受到限制。类似于 Apache Spark,Pandas 在计算和转换时将数据加载到内存中,但与 Spark 不同的是,Pandas 不是分布式计算平台,因此一切都必须在单个系统的 CPU 和内存上完成。这种特性限制了 Pandas 在两个方面的使用:单个系统上的 Pandas 无法处理大量数据,即使是适合单个系统内存的数据,处理一个相对较小的数据集也可能需要相当长的时间。Dask 等框架可以解决第一个问题,但是虽然 Dask 可以在机器集群中并行处理大型数据集,但实际上,大多数机器学习项目的数据都可以在单个系统的内存中进行处理。因此,我们需要一种能在单机上高效并行执行 Pandas 操作的工具,以解决前面提到的第二个问题。
英伟达™(NVIDIA®)GTC 2024大会上,英伟达™(NVIDIA®)宣布RAPIDS cuDF现在可以为950万Pandas 用户提供GPU加速,而无需修改他们的代码。cuDF 是一个GPU DataFrame库,用于使用GPU并行处理数据。在安装 cuDF 之前,请确保您的系统可以使用英伟达™(NVIDIA®)图形处理器,并且您的系统上安装了 GeForce RTX 3090。如果您没有这样的硬件,也可以在谷歌 Colab 等云平台上运行 cuDF 代码,这些平台可以为您的使用情况提供足够的 GPU 资源。
观点
-
Pandas 是数据分析和机器学习工作中的重要工具,但在处理大型数据集时效率受到限制。
-
与 Apache Spark 类似,Pandas 在计算和转换时将数据加载到内存中,但与 Spark 不同的是,Pandas 不是分布式计算平台,因此一切都必须在单个系统的 CPU 和内存上完成。
-
英伟达™(NVIDIA®)Pandas 加速框架 cuDF 可以解决 Pandas 在处理大型数据集时的效率问题。
-
cuDF 是一个GPU DataFrame库,用于使用GPU并行处理数据。
-
在安装 cuDF 之前,请确保您的系统可以使用英伟达™(NVIDIA®)图形处理器。
-
如果您没有这样的硬件,也可以在谷歌 Colab 等云平台上运行 cuDF 代码,这些平台可以为您的使用情况提供足够的 GPU 资源。
-
使用 cuDF 可以提高 Pandas 在处理大型数据集时的效率。
英伟达™(NVIDIA®)Pandas 加速框架 cuDF 简要介绍