(坑点!!!)给定n条过原点的直线和m条抛物线(y=ax^2+bx+c,a>0),对于每一条抛物线,是否存在一条直线与它没有交点,若有,输出直线斜率

题目

思路:

1、区间端点可能是小数的时候,不能直接利用加减1将 < 转化为 <=,例如,x < 1.5 不等价于 x <= 2.5

2、该题中k在(b - sqrt(4 * a * c), b + sqrt(4 * a * c) 中,注意是开区间,那么可以将左端点向上取整,右端点向下取整,即sqrt(4 * a * c)向下取整,计算出左右端点l,r,那么k在[l, r] 中(闭区间),如果4*a*c是平方数,那么l--, r++

3、最好把可能为小数的部分连同它的系数看成整体,若把4开根,那么sqrt(4 * a * c) == 2 * sqrt(a * c), 那么得再判断sqrt(a * c) 是不是 0.5结尾的,若是,那么2 * sqrt(a * c)还是整数

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
#define fi first
#define se second
#define lson p << 1
#define rson p << 1 | 1
const int maxn = 1e6 + 5, inf = 1e9, maxm = 4e4 + 5, mod = 1e9 + 7, N = 1e6;
int a[maxn], b[maxn];
int k[maxn];
// bool vis[maxn];
int n, m;
string s;

int sqt(int x){
    int l = 0, r = inf;
    while(l <= r){
        int mid = (l + r) >> 1;
        if(mid * mid == x) return mid;
        else if(mid * mid < x) l = mid + 1;
        else r = mid - 1;
    }
    return r;
}
void solve(){
    int res = 0;
    // int k;
    int x;
    int q;
	int a, b, c;
    cin >> n >> m;
	for(int i = 1; i <= n; i++){
		cin >> k[i];
	}
	sort(k + 1, k + n + 1);
	for(int i = 1; i <= m; i++){
		cin >> a >> b >> c;
		if(c <= 0){
			cout << "No\n";
			continue;
		}
		int sq = sqrt(4 * a * c);
		int l = (b - sq), r = (b + sq);
		if(sq * sq == 4 * a * c){
			l++;
			r--;
		}
		int pos = lower_bound(k + 1, k + n + 1, l) - k;
		// cout << l << ' ' << r << '\n';
		if(pos <= n && k[pos] <= r){
			cout << "Yes\n";
			cout << k[pos] << '\n';
		}
		else cout << "No\n";	
	}
	cout << '\n';
}
    
signed main(){
    ios::sync_with_stdio(0);
    cin.tie(0);
    int T = 1;
    cin >> T;
    while (T--)
    {
        solve();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

__night_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值