阶跃信号与冲激信号


一. 奇异信号


奇异信号也称突变信号。信号中的奇异点及不规则的突变部分经常携带有比较重要的信息,它是信号重要的特征之一:
例如在图像信号里,灰色的突变形成物体的轮廓。
在这里插入图片描述
函数本身有不连续点(跳变点)或其导数与积分有不连续点的一类函数统称为奇异信号或奇异函数。

奇异信号包括:
(1)单位阶跃信号
(2)单位冲激和冲激偶信号
(3)斜变信号,又称为斜坡信号或者斜升信号


1. 单位斜变信号


单位斜变信号斜率为1


2. 单位阶跃信号


单位阶跃函数 t = 0点无定义或为 1 2 \frac{1}{2} 21,跳变强度是1

**

门函数(实质还是阶跃函数的组合)

**

***

单位冲激信号


它是一个“面积”等于1的理想化了的窄脉冲。也就是说,这个脉冲的幅度等于它的宽度的倒数。
注意冲激信号的强度和高度不是一回事,详情可参考:
导数和微分的区别与联系

冲激函数的一些重要性质:

对冲激函数求导可得到冲激偶函数,单位冲激偶是这样的一种函数:当 t从负值趋于0时,它是一个强度为无限大的正的冲激函数,当t从正值趋于0时,它是一个强度为无限大的负的冲激函数。

冲击偶函数是奇函数,积分面积为0。


二. 用冲激函数表示跳跃强度


通过冲激信号的强度和方向来表示原函数的增减程度。

在这里插入图片描述
更正:斜边信号求导为阶跃信号,冲激信号求导为冲激偶信号;
故倒数第二个图中左侧没有冲激信号,只有右侧有;但最后一个图中,因为起始点是从2开始的,故左右两侧都有冲激信号,强度为跳变点右连续减左连续,左侧=2,强度应再画高一点,超过 2 3 \frac{2}{3} 32

### 推导阶跃信号波形的方法和原理 对于给定的阶跃信号 \( u(t) \),该信号在时间 \( t=0 \) 处从零跳变到某个常数值。假设初始条件相同,在同一系统内产生的另一个阶跃响应可以通过分析系统的传递函数来获得。 #### 方法一:基于线性时不变(LTI)系统的卷积积分法 如果已知输入为单位阶跃信号 \( u(t) \),那么输出可以表示为: \[ y(t)=\int_{-\infty}^{+\infty}{h(\tau)}u(t-\tau)d\tau=\int_0^th(\tau)d\tau \] 这里 \( h(t) \) 是冲激响应,即当输入为狄拉克δ函数时系统的输出[^1]。通过求解上述积分方程可得新的阶跃响应曲线。 #### 方法二:利用Laplace变换解析表达式 设原系统的传递函数为 \( H(s) \),则对应的阶跃响应为: \[ Y(s)=H(s)\cdot U(s),U(s)=\frac{1}{s},y(t)=\mathcal{L}^{-1}\left[H(s)/s\right](t) \] 此处 \( \mathcal{L}^{-1}[\cdot] \) 表示逆拉普拉斯变换操作。这种方法适用于那些可以直接写出传递函数形式的情况,并且便于理论计算仿真验证[^2]。 #### 实际案例说明 考虑一个简单的一阶RC电路作为例子,其微分方程描述如下所示: \[ RC\frac{{dy}}{{dt}} + y = x,\quad x=u(t) \] 对其进行拉氏转换得到传递函数: \[ H(s)=\frac{Y(s)}{X(s)}=\frac{\omega_c}{s+\omega_c} \] 其中 \( \omega_c=\frac{1}{RC} \) 称作角频率截止点。因此新加入的阶跃信号引起的响应将是原始阶跃响应经过适当调整后的版本,具体取决于电阻R和电容C的具体取值关系[^3]。 ```matlab % MATLAB代码实现 syms s; w_c = sym('wc'); % 定义角频率变量 H_s = w_c / (s + w_c); % 构建传递函数 step_response = ilaplace(H_s/s); disp(step_response); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wayne_Fine

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值