综合分析:图像处理、机器视觉,机器视觉与深度学习

图像处理、机器视觉的概念

  • 图像处理(image processing):用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。

  • 机器视觉:即采用机器代替人眼来做测量和判断。 机器视觉系统 是指通过机器视觉产品(即图像摄取装置,分CMOSCCD 两种)把图像抓取到,然后将该图像传送至 处理单元 ,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别 , 也就是采用机器代替人眼来做测量和判断。

区别开机器视觉与计算机视觉。计算机视觉:指对图像进行数据采集后提取出图像的特征,一般处理的图像的数据量很大,偏软件层

图像处理与计算机视觉的区别

图像处理计算机视觉
不同点
程度不同图像处理,用计算机对图像进行分析,以达到所需结果的技术。计算机视觉是让计算机获取图像到看懂图像的过程。更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
内容不同图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。计算机视觉技术包括图像获取、预处理、特征提取、检测分割、高级处理。
应用程度不同图像处理应用于:摄影及印刷、卫星图像处理、医学图像处理、面孔识别,特征识别、显微图像处理、汽车障碍识别。计算机视觉应用于:视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。
共同点都涉及对数字图像进行分析和处理两者都依赖于数学、计算机科学和工程技术。

机器视觉 和 深度学习 有密切关系。

 深度学习是一种机器学习技术,其核心是人工神经网络,能够通过训练大量数据来自动学习特征并进行决策。 在机器视觉中,深度学习技术被广泛应用于图像识别、目标检测、图像分割等任务,取得了许多重要的突破。
  • 优点:
    1. 深度学习算法的通用性很强,在传统算法里面,针对不同的物体需要定制不同的算法。相比来看,基于深度学习的算法更加通用,比如在传统CNN基础上发展起来的faster RCNN,在人脸、行人、一般物体检测任务上都可以取得非常好的效果。
    2. 深度学习获得的特征(feature)有很强的迁移能力。所谓特征迁移能力,指的是在A任务上学习到的一些特征,在B任务上使用也可以获得非常好的效果。

    3. 工程开发、优化、维护成本低。深度学习计算主要是卷积和矩阵乘法,针对这种计算优化,所有深度学习算法都可以提升性能。

    计算机视觉任务的应用。

  • 应用

  1. 工业领域:机器视觉在工业生产中发挥着重要作用。它可以用于自动检测和自动化加工,通过对工件进行检测和测量,使整个生产过程更加智能化和高效化。在智能制造中,机器视觉可以识别零件、检测生产线上的缺陷和故障,从而提高生产过程的可靠性和质量。此外,机器视觉还应用于分拣、包装和物流等环节,使物流过程更加智能化和高效化。
  2. 医疗领域:在医学领域,机器视觉技术被用于医学图像的分析和处理,如CT、MRI等成像技术。通过对医学图像的分析和处理,医生可以更加准确和快速地进行疾病的诊断和治疗。在癌症等疾病处理中,机器视觉可以辅助精准定位和切除肿瘤组织,提高手术的准确度和成功率。
  3. 军事领域:机器视觉在军事技术中也有重要应用,如用于无人机、导弹和军事机器人等军事设备的自主导航和自主作战。

具体的资料来源

博客园

百度

百度

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值