Parameter Learning

Parameter Learning

Gradient Descent(梯度下降)

So we have our hypothesis function and we have a way of measuring how well it fits into the data. Now we need to estimate(估计) the parameters in the hypothesis function. That’s where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ 0 \theta_0 θ0 and θ 1 \theta_1 θ1 (actually we are graphing the cost function as a function of the parameter estimates). We are not graphing x and y itself, but the parameter range of our hypothesis function and the cost resulting from selecting a particular set of parameters.

We put θ 0 \theta_0 θ0 on the x axis and θ 1 \theta_1 θ1 on the y axis, with the cost function on the vertical z axis. The points on our graph will be the result of the cost function using our hypothesis with those specific theta parameters. The graph below depicts such a setup.
在这里插入图片描述
We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum. The red arrows show the minimum points in the graph.

The way we do this is by taking the derivative (the tangential line to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down the cost function in the direction with the steepest descent. The size of each step is determined by the parameter α, which is called the learning rate.

For example, the distance between each ‘star’ in the graph above represents a step determined by our parameter α. A smaller α would result in a smaller step and a larger α results in a larger step. The direction in which the step is taken is determined by the partial derivative of J(\theta_0,\theta_1)J(θ0,θ1). Depending on where one starts on the graph, one could end up at different points. The image above shows us two different starting points that end up in two different places.

The gradient descent algorithm is:

repeat until convergence:

θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) θj:=θjαθjJ(θ0,θ1)

where

j=0,1 represents the feature index number.

At each iteration j, one should simultaneously update the parameters θ 1 , θ 2 , . . . , θ n \theta_1, \theta_2,...,\theta_n θ1,θ2,...,θn. Updating a specific parameter prior to calculating another one on the j ( t h ) j^{(th)} j(th) iteration would yield to a wrong implementation.
在这里插入图片描述

Gradient Descent Intuition

In this video we explored the scenario where we used one parameter θ 1 \theta_1 θ1 and plotted its cost function to implement a gradient descent. Our formula for a single parameter was :

Repeat until convergence:

θ 1 : = θ 1 − α d d θ 1 J ( θ 1 ) \theta_1:=\theta_1-\alpha \frac{d}{d\theta_1} J(\theta_1) θ1:=θ1αdθ1dJ(θ1)

Regardless of the slope’s sign for d d θ 1 J ( θ 1 ) \frac{d}{d\theta_1} J(\theta_1) dθ1dJ(θ1), θ 1 \theta_1 θ1 eventually converges to its minimum value. The following graph shows that when the slope is negative, the value of θ 1 \theta_1 θ1 increases and when it is positive, the value of θ 1 \theta_1 θ1 decreases.
在这里插入图片描述
On a side note, we should adjust our parameter \alphaα to ensure that the gradient descent algorithm converges in a reasonable time. Failure to converge or too much time to obtain the minimum value imply that our step size is wrong.
在这里插入图片描述

How does gradient descent converge with a fixed step size α \alpha α?

The intuition behind the convergence is that d d θ 1 J ( θ 1 ) \frac{d}{d\theta_1} J(\theta_1) dθ1dJ(θ1) approaches 0 as we approach the bottom of our convex function. At the minimum, the derivative will always be 0 and thus we get:

θ 1 : = θ 1 − α ∗ 0 \theta_1:=\theta_1-\alpha * 0 θ1:=θ1α0

在这里插入图片描述

Gradient Descent For Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to :

repeat until convergence: {

θ 0   : = θ 0 − α 1 m ∑ i = 1 m   ( h 0 ( x i ) − y i ) ​ θ 1   : = θ 1 − α 1 m ∑ i = 1 m   ( ( h 0 ( x i ) − y i ) x i ) \theta _0\::=\theta _0-\alpha \frac{1}{m}\sum _{i=1}^m\:\left(h_0\left(x_i\right)-y_i\right)\\ ​ \theta _1\::=\theta _1-\alpha \frac{1}{m}\sum _{i=1}^m\:\left(\left(h_0\left(x_i\right)-y_i\right)x_i\right) θ0:=θ0αm1i=1m(h0(xi)yi)θ1:=θ1αm1i=1m((h0(xi)yi)xi)

}

where m is the size of the training set, θ 0 \theta_0 θ0 a constant that will be changing simultaneously with θ 1 \theta_1 θ1 and x i , y i x_{i}, y_{i} xi,yi are values of the given training set (data).

Note that we have separated out the two cases for θ j \theta_j θj into separate equations for θ 0 \theta_0 θ0 and θ 1 \theta_1 θ1; and that for θ 1 \theta_1 θ1 we are multiplying x i x_{i} xi at the end due to the derivative. The following is a derivation of ∂ ∂ θ j J ( θ ) \frac {\partial}{\partial \theta_j}J(\theta) θjJ(θ) for a single example :

在这里插入图片描述

The point of all this is that if we start with a guess for our hypothesis and then repeatedly apply these gradient descent equations, our hypothesis will become more and more accurate.

So, this is simply gradient descent on the original cost function J. This method looks at every example in the entire training set on every step, and is called batch gradient descent. Note that, while gradient descent can be susceptible to local minima in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optima; thus gradient descent always converges (assuming the learning rate α is not too large) to the global minimum. Indeed, J is a convex quadratic function. Here is an example of gradient descent as it is run to minimize a quadratic function.

在这里插入图片描述

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, which was initialized at (48,30). The x’s in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through as it converged to its minimum.

Words and Phrases

English中文English中文
estimate估计depicts描述
slope斜率iteration迭代
simultaneously同时地convergence收敛
slope斜率iteration迭代
simultaneously同时地convergence收敛
trajectory轨迹ellipse椭圆
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
后台采用apache服务器下的cgi处理c语言做微信小程序后台逻辑的脚本映射。PC端的服务器和客户端都是基于c语言写的。采用mysql数据库进行用户数据和聊天记录的存储。.zip C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。下面详细介绍C语言的基本概念和语法。 1. 变量和数据类型 在C语言中,变量用于存储数据,数据类型用于定义变量的类型和范围。C语言支持多种数据类型,包括基本数据类型(如int、float、char等)和复合数据类型(如结构体、联合等)。 2. 运算符 C语言中常用的运算符包括算术运算符(如+、、、/等)、关系运算符(如==、!=、、=、<、<=等)、逻辑运算符(如&&、||、!等)。此外,还有位运算符(如&、|、^等)和指针运算符(如、等)。 3. 控制结构 C语言中常用的控制结构包括if语句、循环语句(如for、while等)和switch语句。通过这些控制结构,可以实现程序的分支、循环和多路选择等功能。 4. 函数 函数是C语言中用于封装代码的单元,可以实现代码的复用和模块化。C语言中定义函数使用关键字“void”或返回值类型(如int、float等),并通过“{”和“}”括起来的代码块来实现函数的功能。 5. 指针 指针是C语言中用于存储变量地址的变量。通过指针,可以实现对内存的间接访问和修改。C语言中定义指针使用星号()符号,指向数组、字符串和结构体等数据结构时,还需要注意数组名和字符串常量的特殊性质。 6. 数组和字符串 数组是C语言中用于存储同类型数据的结构,可以通过索引访问和修改数组中的元素。字符串是C语言中用于存储文本数据的特殊类型,通常以字符串常量的形式出现,用双引号("...")括起来,末尾自动添加'\0'字符。 7. 结构体和联合 结构体和联合是C语言中用于存储不同类型数据的复合数据类型。结构体由多个成员组成,每个成员可以是不同的数据类型;联合由多个变量组成,它们共用同一块内存空间。通过结构体和联合,可以实现数据的封装和抽象。 8. 文件操作 C语言中通过文件操作函数(如fopen、fclose、fread、fwrite等)实现对文件的读写操作。文件操作函数通常返回文件指针,用于表示打开的文件。通过文件指针,可以进行文件的定位、读写等操作。 总之,C语言是一种功能强大、灵活高效的编程语言,广泛应用于各种领域。掌握C语言的基本语法和数据结构,可以为编程学习和实践打下坚实的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值