一个月前,Meta 发布了开源大模型 llama3 系列,在多个关键基准测试中优于业界 SOTA 模型,并在代码生成任务上全面领先。
此后,开发者们便开始了本地部署和实现,比如 llama3 的中文实现、llama3 的纯 NumPy 实现等。
十几个小时前,有位名为「Nishant Aklecha」的开发者发布了一个从零开始实现 llama3 的存储库,包括跨多个头的注意力矩阵乘法、位置编码和每个层在内都有非常详细的解释。
该项目得到了大神 Karpathy 的称赞,他表示项目看起来不错,完全展开后,通过模块嵌套和相互调用,可以更容易看到实际的情况。
上传半天的时间,该项目已在 GitHub 上收获了 1.5k 的 star,足可见其含金量。
从零开始实现 llama3
接下来项目作者手把手教你如何从头开始实现 llama3。
项目地址:https://github.com/naklecha/llama3-from-scratch
首先从 Meta 提供的 llama3 模型文件中加载张量。
下载地址:https://llama.meta.com/llama-downloads/
接着是分词器(tokenizer),作者表示没打算自己实现分词器,因而借用了 Andrej Karpathy 的实现方式:
分词器的实现链接:https://github.com/karpathy/minbpe
from pathlib import Path``import tiktoken``from tiktoken.load import load_tiktoken_bpe``import torch``import json``import matplotlib.pyplot as plt``tokenizer_path = "Meta-Llama-3-8B/tokenizer.model"``special_tokens = [` `"<|begin_of_text|>",` `"<|end_of_text|>",` `"<|reserved_special_token_0|>",` `"<|reserved_special_token_1|>",` `"<|reserved_special_token_2|>",` `"<|reserved_special_token_3|>",` `"<|start_header_id|>",` `"<|end_header_id|>",` `"<|reserved_special_token_4|>",` `"<|eot_id|>", # end of turn` `] + [f"<|reserved_special_token_{i}|>" for i in range (5, 256 - 5)] mergeable_ranks = load_tiktoken_bpe (tokenizer_path) tokenizer = tiktoken.Encoding (` `name=Path (tokenizer_path).name,` `pat_str=r"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p {L}\p {N}]?\p {L}+|\p {N}{1,3}| ?[^\s\p {L}\p {N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+",` `mergeable_ranks=mergeable_ranks,` `special_tokens={token: len (mergeable_ranks) + i for i, token in enumerate (special_tokens)},``)``tokenizer.decode (tokenizer.encode ("hello world!"))
'hello world!'
上述步骤完成后,就是读取模型文件了。由于该研究是从头开始实现 llama3,因此代码一次只读取一个张量文件。
model = torch.load ("Meta-Llama-3-8B/consolidated.00.pth")``print (json.dumps (list (model.keys ())[:20], indent=4))
[` `"tok_embeddings.weight",` `"layers.0.attention.wq.weight",` `"layers.0.attention.wk.weight",` `"layers.0.attention.wv.weight",` `"layers.0.attention.wo.weight",` `"layers.0.feed_forward.w1.weight",` `"layers.0.feed_forward.w3.weight",` `"layers.0.feed_forward.w2.weight",` `"layers.0.attention_norm.weight",` `"layers.0.ffn_norm.weight",` `"layers.1.attention.wq.weight",` `"layers.1.attention.wk.weight",` `"layers.1.attention.wv.weight",` `"layers.1.attention.wo.weight",` `"layers.1.feed_forward.w1.weight",` `"layers.1.feed_forward.w3.weight",` `"layers.1.feed_forward.w2.weight",` `"layers.1.attention_norm.weight",` `"layers.1.ffn_norm.weight",` `"layers.2.attention.wq.weight"``]
with open ("Meta-Llama-3-8B/params.json", "r") as f:` `config = json.load (f)``config
{'dim': 4096,` `'n_layers': 32,` `'n_heads': 32,` `'n_kv_heads': 8,` `'vocab_size': 128256,` `'multiple_of': 1024,` `'ffn_dim_multiplier': 1.3,` `'norm_eps': 1e-05,` `'rope_theta': 500000.0}
项目作者使用以下配置来推断模型细节:
-
模型有 32 个 transformer 层;
-
每个多头注意力块有 32 个头。
dim = config ["dim"]``n_layers = config ["n_layers"]``n_heads = config ["n_heads"]``n_kv_heads = config ["n_kv_heads"]``vocab_size = config ["vocab_size"]``multiple_of = config ["multiple_of"]``ffn_dim_multiplier = config ["ffn_dim_multiplier"]``norm_eps = config ["norm_eps"]``rope_theta = torch.tensor (config ["rope_theta"])
接下来的操作是将文本装换为 token,这里作者使用的是 tiktoken 库(一个用于 OpenAI 模型的 BPE tokeniser)。
prompt = "the answer to the ultimate question of life, the universe, and everything is"``tokens = [128000] + tokenizer.encode (prompt)``print (tokens)``tokens = torch.tensor (tokens)``prompt_split_as_tokens = [tokenizer.decode ([token.item ()]) for token in tokens]``print (prompt_split_as_tokens)
[128000, 1820, 4320, 311, 279, 17139, 3488, 315, 2324, 11, 279, 15861, 11, 323, 4395, 374, 220]``['<|begin_of_text|>', 'the', ' answer', ' to', ' the', ' ultimate', ' question', ' of', ' life', ',', ' the', ' universe', ',', ' and', ' everything', ' is', ' ']
然后将 token 转换为嵌入。
embedding_layer = torch.nn.Embedding (vocab_size, dim)``embedding_layer.weight.data.copy_(model ["tok_embeddings.weight"])``token_embeddings_unnormalized = embedding_layer (tokens).to (torch.bfloat16)``token_embeddings_unnormalized.shape
torch.Size ([17, 4096])
将嵌入进行归一化。该研究使用均方根 RMS 算法进行归一化。不过,在这一步之后,张量形状不会改变,只是值进行了归一化。
# def rms_norm (tensor, norm_weights):``# rms = (tensor.pow (2).mean (-1, keepdim=True) + norm_eps)**0.5``# return tensor * (norm_weights /rms)``def rms_norm (tensor, norm_weights):` `return (tensor * torch.rsqrt (tensor.pow (2).mean (-1, keepdim=True) + norm_eps)) * norm_weights
构建 transformer 第一层。完成上述准备后,接着是构建 transformer 第一层:从模型文件中访问 layer.0(即第一层),归一化后嵌入维度仍然是 [17x4096] 。
token_embeddings = rms_norm (token_embeddings_unnormalized, model ["layers.0.attention_norm.weight"])``token_embeddings.shape
torch.Size ([17, 4096])
从头开始实现注意力。加载第一层 transformer 的注意力头:
print (` `model ["layers.0.attention.wq.weight"].shape,` `model ["layers.0.attention.wk.weight"].shape,` `model ["layers.0.attention.wv.weight"].shape,` `model ["layers.0.attention.wo.weight"].shape``)``torch.Size ([4096, 4096]) torch.Size ([1024, 4096]) torch.Size ([1024, 4096]) torch.Size ([4096, 4096])
展开查询。展开来自多个注意力头的查询,得到的形状是 [32x128x4096],这里,32 是 llama3 中注意力头的数量,128 是查询向量的大小,4096 是 token 嵌入的大小。
q_layer0 = model ["layers.0.attention.wq.weight"]``head_dim = q_layer0.shape [0] //n_heads``q_layer0 = q_layer0.view (n_heads, head_dim, dim)``q_layer0.shape
torch.Size ([32, 128, 4096])
从头实现第一层的第一个头。访问第一层的查询权重矩阵,大小是 [128x4096]。
q_layer0_head0 = q_layer0 [0]``q_layer0_head0.shape
torch.Size ([128, 4096])
将查询权重与 token 嵌入相乘,从而得到 token 的查询,在这里你可以看到结果大小是 [17x128]。
q_per_token = torch.matmul (token_embeddings, q_layer0_head0.T)``q_per_token.shape
torch.Size ([17, 128])
定位编码。现在处于这样一个阶段,即对提示符中的每个 token 都有一个查询向量,但是考虑单个查询向量,我们不知道其提示符中的位置。作者使用了 RoPE(旋转位置嵌入)来解决。
q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2)``q_per_token_split_into_pairs.shape
torch.Size ([17, 64, 2])
在上面的步骤中,该研究将查询向量分成对,并对每对应用旋转角度移位。
使用复数点积来旋转向量。
zero_to_one_split_into_64_parts = torch.tensor (range (64))/64``zero_to_one_split_into_64_parts
tensor ([0.0000, 0.0156, 0.0312, 0.0469, 0.0625, 0.0781, 0.0938, 0.1094, 0.1250,` `0.1406, 0.1562, 0.1719, 0.1875, 0.2031, 0.2188, 0.2344, 0.2500, 0.2656,` `0.2812, 0.2969, 0.3125, 0.3281, 0.3438, 0.3594, 0.3750, 0.3906, 0.4062,` `0.4219, 0.4375, 0.4531, 0.4688, 0.4844, 0.5000, 0.5156, 0.5312, 0.5469,` `0.5625, 0.5781, 0.5938, 0.6094, 0.6250, 0.6406, 0.6562, 0.6719, 0.6875,` `0.7031, 0.7188, 0.7344, 0.7500, 0.7656, 0.7812, 0.7969, 0.8125, 0.8281,` `0.8438, 0.8594, 0.8750, 0.8906, 0.9062, 0.9219, 0.9375, 0.9531, 0.9688,` `0.9844])
freqs = 1.0 / (rope_theta ** zero_to_one_split_into_64_parts)``freqs
tensor ([1.0000e+00, 8.1462e-01, 6.6360e-01, 5.4058e-01, 4.4037e-01, 3.5873e-01,` `2.9223e-01, 2.3805e-01, 1.9392e-01, 1.5797e-01, 1.2869e-01, 1.0483e-01,` `8.5397e-02, 6.9566e-02, 5.6670e-02, 4.6164e-02, 3.7606e-02, 3.0635e-02,` `2.4955e-02, 2.0329e-02, 1.6560e-02, 1.3490e-02, 1.0990e-02, 8.9523e-03,` `7.2927e-03, 5.9407e-03, 4.8394e-03, 3.9423e-03, 3.2114e-03, 2.6161e-03,` `2.1311e-03, 1.7360e-03, 1.4142e-03, 1.1520e-03, 9.3847e-04, 7.6450e-04,` `6.2277e-04, 5.0732e-04, 4.1327e-04, 3.3666e-04, 2.7425e-04, 2.2341e-04,` `1.8199e-04, 1.4825e-04, 1.2077e-04, 9.8381e-05, 8.0143e-05, 6.5286e-05,` `5.3183e-05, 4.3324e-05, 3.5292e-05, 2.8750e-05, 2.3420e-05, 1.9078e-05,` `1.5542e-05, 1.2660e-05, 1.0313e-05, 8.4015e-06, 6.8440e-06, 5.5752e-06,` `4.5417e-06, 3.6997e-06, 3.0139e-06, 2.4551e-06])
freqs_for_each_token = torch.outer (torch.arange (17), freqs)``freqs_cis = torch.polar (torch.ones_like (freqs_for_each_token), freqs_for_each_token)``freqs_cis.shape``# viewing tjhe third row of freqs_cis``value = freqs_cis [3]``plt.figure ()``for i, element in enumerate (value [:17]):` `plt.plot ([0, element.real], [0, element.imag], color='blue', linewidth=1, label=f"Index: {i}")` `plt.annotate (f"{i}", xy=(element.real, element.imag), color='red')` `plt.xlabel ('Real')` `plt.ylabel ('Imaginary')` `plt.title ('Plot of one row of freqs_cis')` `plt.show ()
现在每个 token 查询都有了复数。
q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs)``q_per_token_as_complex_numbers.shape
torch.Size ([17, 64])
q_per_token_as_complex_numbers_rotated = q_per_token_as_complex_numbers * freqs_cis``q_per_token_as_complex_numbers_rotated.shape
torch.Size ([17, 64])
旋转后的向量。
q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers_rotated)``q_per_token_split_into_pairs_rotated.shape
torch.Size ([17, 64, 2])
现在有了一个新的查询向量 (旋转查询向量),形状为 [17x128],其中 17 是 token 数量,128 是查询向量的维度。
q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape)``q_per_token_rotated.shape
torch.Size ([17, 128])
键(几乎和查询一样),键也生成维度为 128 的键向量。键的权重只有查询的 1/4,这是因为键的权重在 4 个头之间共享,以减少所需的计算量,键也会被旋转以添加位置信息,就像查询一样。
k_layer0 = model ["layers.0.attention.wk.weight"]``k_layer0 = k_layer0.view (n_kv_heads, k_layer0.shape [0] //n_kv_heads, dim)``k_layer0.shape
torch.Size ([8, 128, 4096])
k_layer0_head0 = k_layer0 [0]``k_layer0_head0.shape
torch.Size ([128, 4096])
k_per_token = torch.matmul (token_embeddings, k_layer0_head0.T)``k_per_token.shape
torch.Size ([17, 128])
k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2)``k_per_token_split_into_pairs.shape
torch.Size ([17, 64, 2])
k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs)``k_per_token_as_complex_numbers.shape
torch.Size ([17, 64])
k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis)``k_per_token_split_into_pairs_rotated.shape
torch.Size ([17, 64, 2])
k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape)``k_per_token_rotated.shape
torch.Size ([17, 128])
每个 token 查询和键的旋转值如下,每个查询和键现在的形状都是 [17x128]。
接下来一步是将查询和键矩阵相乘。注意力得分矩阵 (qk_per_token) 的形状为 [17x17],其中 17 是提示中 token 的数量。
qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(head_dim)**0.5``qk_per_token.shape
torch.Size ([17, 17])
现在必须掩蔽查询键分数。
在 llama3 的训练过程中,未来 token 的 qk 分数被掩蔽。这是因为在训练期间,只学习使用过去的 token 来预测未来的 token。因此在推理过程中,将未来的 token 标记为零。
def display_qk_heatmap (qk_per_token):` `_, ax = plt.subplots ()` `im = ax.imshow (qk_per_token.to (float).detach (), cmap='viridis')` `ax.set_xticks (range (len (prompt_split_as_tokens)))` `ax.set_yticks (range (len (prompt_split_as_tokens)))` `ax.set_xticklabels (prompt_split_as_tokens)` `ax.set_yticklabels (prompt_split_as_tokens)` `ax.figure.colorbar (im, ax=ax)` `display_qk_heatmap (qk_per_token)
mask = torch.full ((len (tokens), len (tokens)), float ("-inf"), device=tokens.device) mask = torch.triu (mask, diagonal=1) mask
tensor ([[0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf, -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., -inf],` `[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
qk_per_token_after_masking = qk_per_token + mask``display_qk_heatmap (qk_per_token_after_masking)
qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16) display_qk_heatmap (qk_per_token_after_masking_after_softmax)
值(几乎在注意力结束时)
这些分数 (0-1) 被用于确定每个 token 使用了多少值矩阵。
-
就像键一样,值权重也在 4 个注意力头之间共享(以节省计算量)
-
结果,下面的值权重矩阵形状为 [8x128x4096]
v_layer0 = model ["layers.0.attention.wv.weight"] v_layer0 = v_layer0.view (n_kv_heads, v_layer0.shape [0] //n_kv_heads, dim) v_layer0.shape
torch.Size ([8, 128, 4096])
第一层和第一个头的值权重矩阵如下所示。
v_layer0_head0 = v_layer0 [0] v_layer0_head0.shape
torch.Size ([128, 4096])
值向量如下图所示。
现在使用值权重来获取每个 token 的注意力值,其大小为 [17x128],其中 17 为提示中的 token 数,128 为每个 token 的值向量维数。
v_per_token = torch.matmul (token_embeddings, v_layer0_head0.T)v_per_token.shape
torch.Size ([17, 128])
注意力如下图所示。
与每个 token 的值相乘后得到的注意力向量的形状为 [17*128]。
qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token) qkv_attention.shape
torch.Size ([17, 128])
多头注意力与单头注意力如下图所示。
现在有了第一层和第一个头的注意力值。
接下来运行一个循环并执行与上面单元完全相同的数学运算,不过第一层中的每个头除外。
qkv_attention_store = []``for head in range (n_heads):` `q_layer0_head = q_layer0 [head]` `k_layer0_head = k_layer0 [head//4] # key weights are shared across 4 heads``v_layer0_head = v_layer0 [head//4] # value weights are shared across 4 heads``q_per_token = torch.matmul (token_embeddings, q_layer0_head.T)` `k_per_token = torch.matmul (token_embeddings, k_layer0_head.T)` `v_per_token = torch.matmul (token_embeddings, v_layer0_head.T)`` `` ` `q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2)` `q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs)` `q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers * freqs_cis [:len (tokens)])` `q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape)`` `` ` `k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2)` `k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs)` `k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis [:len (tokens)])` `k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape)`` `` ` `qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5``mask = torch.full ((len (tokens), len (tokens)), float ("-inf"), device=tokens.device)` `mask = torch.triu (mask, diagonal=1)` `qk_per_token_after_masking = qk_per_token + mask``qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16)` `qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token)` `qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token)` `qkv_attention_store.append (qkv_attention)``len (qkv_attention_store)
32
现在第一层上的所有 32 个头都有了 qkv_attention 矩阵,并在快结束的时候将所有注意力分数合并为一个大小为 [17x4096] 的大矩阵。
stacked_qkv_attention = torch.cat (qkv_attention_store, dim=-1) stacked_qkv_attention.shape
torch.Size ([17, 4096])
权重矩阵是最后的步骤之一。
第 0 层注意力要做的最后一件事是,对以下的权重矩阵进行乘法操作。
w_layer0 = model ["layers.0.attention.wo.weight"] w_layer0.shape
torch.Size ([4096, 4096])
这是一个简单的线性层,所以只做矩阵乘法(matmul)。
embedding_delta = torch.matmul (stacked_qkv_attention, w_layer0.T) embedding_delta.shape
torch.Size ([17, 4096])
现在,注意力之后的嵌入值有了变化,并应该被添加到原始 token 嵌入中。
embedding_after_edit = token_embeddings_unnormalized + embedding_delta``embedding_after_edit.shape
torch.Size ([17, 4096])
归一化并在嵌入 delta 过程中运行一个前馈神经网络。
embedding_after_edit_normalized = rms_norm (embedding_after_edit, model ["layers.0.ffn_norm.weight"]) embedding_after_edit_normalized.shape
torch.Size ([17, 4096])
加载 ff 权重,并实现前馈网络。
llama3 使用 SwiGLU 前馈网络,该网络架构非常擅长在模型需要时添加非线性。当前,在 LLMs 中使用这一前馈网络是非常标准的做法。
w1 = model ["layers.0.feed_forward.w1.weight"] w2 = model ["layers.0.feed_forward.w2.weight"] w3 = model ["layers.0.feed_forward.w3.weight"] output_after_feedforward = torch.matmul (torch.functional.F.silu (torch.matmul (embedding_after_edit_normalized, w1.T)) * torch.matmul (embedding_after_edit_normalized, w3.T), w2.T) output_after_feedforward.shape
torch.Size ([17, 4096])
现在终于在第一层之后为每个 token 提供了新的编辑后的嵌入,并且在完成之前只剩下 31 层需要处理(one for loop away)。
你可以想象这个编辑后的嵌入拥有在第一层上所有查询的信息。现在每一层将在所问问题上编码越来越复杂的查询,直到得到的嵌入了解所需的下一个 token 的一切。
layer_0_embedding = embedding_after_edit+output_after_feedforward``layer_0_embedding.shape
torch.Size ([17, 4096])
之前为每一层做的所有事情,都可以一次性完成。
final_embedding = token_embeddings_unnormalized``for layer in range (n_layers):` `qkv_attention_store = []` `layer_embedding_norm = rms_norm (final_embedding, model [f"layers.{layer}.attention_norm.weight"])` `q_layer = model [f"layers.{layer}.attention.wq.weight"]` `q_layer = q_layer.view (n_heads, q_layer.shape [0] //n_heads, dim)` `k_layer = model [f"layers.{layer}.attention.wk.weight"]` `k_layer = k_layer.view (n_kv_heads, k_layer.shape [0] //n_kv_heads, dim)` `v_layer = model [f"layers.{layer}.attention.wv.weight"]` `v_layer = v_layer.view (n_kv_heads, v_layer.shape [0] //n_kv_heads, dim)` `w_layer = model [f"layers.{layer}.attention.wo.weight"]` `for head in range (n_heads):` `q_layer_head = q_layer [head]` `k_layer_head = k_layer [head//4]` `v_layer_head = v_layer [head//4]` `q_per_token = torch.matmul (layer_embedding_norm, q_layer_head.T)` `k_per_token = torch.matmul (layer_embedding_norm, k_layer_head.T)` `v_per_token = torch.matmul (layer_embedding_norm, v_layer_head.T)` `q_per_token_split_into_pairs = q_per_token.float ().view (q_per_token.shape [0], -1, 2)` `q_per_token_as_complex_numbers = torch.view_as_complex (q_per_token_split_into_pairs)` `q_per_token_split_into_pairs_rotated = torch.view_as_real (q_per_token_as_complex_numbers * freqs_cis)` `q_per_token_rotated = q_per_token_split_into_pairs_rotated.view (q_per_token.shape)` `k_per_token_split_into_pairs = k_per_token.float ().view (k_per_token.shape [0], -1, 2)` `k_per_token_as_complex_numbers = torch.view_as_complex (k_per_token_split_into_pairs)` `k_per_token_split_into_pairs_rotated = torch.view_as_real (k_per_token_as_complex_numbers * freqs_cis)` `k_per_token_rotated = k_per_token_split_into_pairs_rotated.view (k_per_token.shape)` `qk_per_token = torch.matmul (q_per_token_rotated, k_per_token_rotated.T)/(128)**0.5` `mask = torch.full ((len (token_embeddings_unnormalized), len (token_embeddings_unnormalized)), float ("-inf"))` `mask = torch.triu (mask, diagonal=1)` `qk_per_token_after_masking = qk_per_token + mask` `qk_per_token_after_masking_after_softmax = torch.nn.functional.softmax (qk_per_token_after_masking, dim=1).to (torch.bfloat16)` `qkv_attention = torch.matmul (qk_per_token_after_masking_after_softmax, v_per_token)` `qkv_attention_store.append (qkv_attention)`` `` ` `stacked_qkv_attention = torch.cat (qkv_attention_store, dim=-1)` `w_layer = model [f"layers.{layer}.attention.wo.weight"]` `embedding_delta = torch.matmul (stacked_qkv_attention, w_layer.T)` `embedding_after_edit = final_embedding + embedding_delta` `embedding_after_edit_normalized = rms_norm (embedding_after_edit, model [f"layers.{layer}.ffn_norm.weight"])` `w1 = model [f"layers.{layer}.feed_forward.w1.weight"]` `w2 = model [f"layers.{layer}.feed_forward.w2.weight"]` `w3 = model [f"layers.{layer}.feed_forward.w3.weight"]` `output_after_feedforward = torch.matmul (torch.functional.F.silu (torch.matmul (embedding_after_edit_normalized, w1.T)) * torch.matmul (embedding_after_edit_normalized, w3.T), w2.T)` `final_embedding = embedding_after_edit+output_after_feedforward
现在有了最终的嵌入,即该模型对下一个 token 的最佳猜测。该嵌入的形状与常见的 token 嵌入 [17x4096] 相同,其中 17 为 token 数,4096 为嵌入维数。
final_embedding = rms_norm (final_embedding, model ["norm.weight"]) final_embedding.shape
torch.Size ([17, 4096])
将该嵌入解码为 token 值。
使用该输入解码器将最终的嵌入转换为一个 token。
model ["output.weight"].shape
torch.Size ([128256, 4096])
使用最后 token 的嵌入来预测下一个值。在示例中,42 是「生命、宇宙和万物终极问题的答案是什么」的答案,根据《银河系漫游指南》一书,大多数现代 LLMs 都会回答 42,应该验证了整个代码。
logits = torch.matmul (final_embedding [-1], model ["output.weight"].T) logits.shape
torch.Size ([128256])
模型预测 token 数 2983 为下一个 token,这是 42 的 token 数吗?以下是最后的代码单元。
next_token = torch.argmax (logits, dim=-1) next_token
tensor (2983)
最后,启动。
tokenizer.decode ([next_token.item ()])
'42'
完结撒花
如何学习大模型 AGI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
-END-
👉AGI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉AGI大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉AGI大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓