MATLAB学习笔记:K-means聚类

本文深入介绍了K-means聚类算法的原理,包括初始化、数据分配和质心更新步骤,并提供了MATLAB代码示例。通过示例,展示了如何在MATLAB中实现K-means并进行聚类结果的可视化,帮助读者理解并应用该算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means聚类是一种常用的无监督学习算法,用于将数据集划分为不同的簇。在本篇文章中,我们将详细介绍K-means聚类算法的原理,并给出相应的MATLAB源代码示例。

K-means聚类算法的原理:

  1. 初始化:选择要划分的簇的数量K,并随机选择K个数据点作为初始质心。
  2. 分配:对于每个数据点,计算其与各个质心之间的距离,并将其分配到距离最近的质心所代表的簇中。
  3. 更新:对于每个簇,计算其所有数据点的平均值,并将该平均值作为新的质心。
  4. 重复步骤2和步骤3,直到质心不再发生显著变化或达到最大迭代次数。

下面是一个使用MATLAB实现K-means聚类算法的示例:

% 生成示例数据
data = [randn(100,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值