图像分割之分水岭分割算法

本文介绍了分水岭算法的概念,源自地形学并应用于图像处理,通过模拟淹没过程来识别图像区域。OpenCV 提供的 `watershed()` 函数用于实现这一过程。在示例中,展示了如何使用 OpenCV 的 C++ API 进行交互式图像标记,然后应用分水岭算法进行分割,最后展示分割结果。该方法提高了分割速度和准确性。
摘要由CSDN通过智能技术生成

基本思想

分水岭(watershed)是地形学中的一个经典概念,例如美国落基山脉分水岭,将美国分为两个区域,落在这个分水岭一边的雨滴,最终会到达大西洋,但是落在另一边的雨滴,最终回流到太平洋。为了提取分水岭,人们提出了各种各样的算法,在这些算法中,Vincent和Soille提出了一种基于模拟沉浸的实现方法。在图像处理领域,灰度图像可以被视为地形表面,图像中每个像素的灰度代表这点的高度,其每一个局部极小值(local minima)及其影响区域成为集水盆地(catchments basin)。这样分水岭便被引入图像处理中来。设想每个区域底部刺了一个孔,水从刺过孔的海拔最低的谷底开始往上涌,慢慢地淹没图像的整个区域。当来自不同谷底的水即将汇合时,筑起一道假想的水坝来阻止它。浸没过程结束时,每个区域被水淹没,并被水坝完全包围。这些筑起的水坝确定了对应区域的分水岭,对应于图像的轮廓。此方法不仅速度更快,大大缩短了执行时间,而且结果也更加准确,这使得此算法具有使用价值。(摘自《医学图像处理及三维重建技术研究》[M])
在这里插入图片描述

示例演示

这里展示OpenCV Demo watershed。完整代码

#include <opencv2/core/utility.hpp>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"

#include <cstdio>
#include <iostream>

using namespace cv;
using namespace std;

static void help(char** argv)
{
	cout << "\nThis program demonstrates the famous watershed segmentation algorithm in OpenCV: watershed()\n"
		"Usage:\n" << argv[0] << " [image_name -- default is fruits.jpg]\n" << endl;


	cout << "Hot keys: \n"
		"\tESC - quit the program\n"
		"\tr - restore the original image\n"
		"\tw or SPACE - run watershed segmentation algorithm\n"
		"\t\t(before running it, *roughly* mark the areas to segment on the image)\n"
		"\t  (before that, roughly outline several markers on the image)\n";
}
Mat markerMask, img;
Point prevPt(-1, -1);

static void onMouse(int event, int x, int y, int flags, void*)
{
	if (x < 0 || x >= img.cols || y < 0 || y >= img.rows)
		return;
	if (event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
		prevPt = Point(-1, -1);
	else if (event == EVENT_LBUTTONDOWN)
		prevPt = Point(x, y);
	else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
	{
		Point pt(x, y);
		if (prevPt.x < 0)
			prevPt = pt;
		line(markerMask, prevPt, pt, Scalar::all(255), 5, 8, 0);
		line(img, prevPt, pt, Scalar::all(255), 5, 8, 0);
		prevPt = pt;
		imshow("image", img);
	}
}

int main(int argc, char** argv)
{
	cv::CommandLineParser parser(argc, argv, "{help h | | }{ @input | fruits.jpg | }");
	if (parser.has("help"))
	{
		help(argv);
		return 0;
	}
	//string filename = samples::findFile(parser.get<string>("@input"));
	string filename = "D:\\TestData\\fruits.jpg";
	Mat img0 = imread(filename, 1), imgGray;

	if (img0.empty())
	{
		cout << "Couldn't open image ";
		help(argv);
		return 0;
	}
	help(argv);
	namedWindow("image", 1);

	img0.copyTo(img);
	cvtColor(img, markerMask, COLOR_BGR2GRAY);
	cvtColor(markerMask, imgGray, COLOR_GRAY2BGR);
	markerMask = Scalar::all(0);
	imshow("image", img);
	setMouseCallback("image", onMouse, 0);

	for (;;)
	{
		char c = (char)waitKey(0);

		if (c == 27)
			break;

		if (c == 'r')
		{
			markerMask = Scalar::all(0);
			img0.copyTo(img);
			imshow("image", img);
		}

		if (c == 'w' || c == ' ')
		{
			int i, j, compCount = 0;
			vector<vector<Point> > contours;
			vector<Vec4i> hierarchy;

			findContours(markerMask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

			if (contours.empty())
				continue;
			Mat markers(markerMask.size(), CV_32S);
			markers = Scalar::all(0);
			int idx = 0;
			for (; idx >= 0; idx = hierarchy[idx][0], compCount++)
				drawContours(markers, contours, idx, Scalar::all(compCount + 1), -1, 8, hierarchy, INT_MAX);

			if (compCount == 0)
				continue;

			vector<Vec3b> colorTab;
			for (i = 0; i < compCount; i++)
			{
				int b = theRNG().uniform(0, 255);
				int g = theRNG().uniform(0, 255);
				int r = theRNG().uniform(0, 255);

				colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
			}

			double t = (double)getTickCount();
			watershed(img0, markers);
			t = (double)getTickCount() - t;
			printf("execution time = %gms\n", t*1000. / getTickFrequency());

			Mat wshed(markers.size(), CV_8UC3);

			// paint the watershed image
			for (i = 0; i < markers.rows; i++)
				for (j = 0; j < markers.cols; j++)
				{
					int index = markers.at<int>(i, j);
					if (index == -1)
						wshed.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
					else if (index <= 0 || index > compCount)
						wshed.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
					else
						wshed.at<Vec3b>(i, j) = colorTab[index - 1];
				}

			wshed = wshed * 0.5 + imgGray * 0.5;
			imshow("watershed transform", wshed);
		}
	}

	return 0;
}

运行结果

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值