1hanoi双塔问题

文章描述了汉诺塔问题,其中涉及将2n个不同尺寸的圆盘从柱A移动到柱C,中间可以在柱B暂存,每次移动一个圆盘并保持上下大小顺序。给出了递归和非递归两种解法,计算最少移动次数。对于n=1,最少移动次数为2,且提供了n=200的数据范围。
摘要由CSDN通过智能技术生成

题目描述

给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有空的圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为n=3的情形)。现要将 这些国盘移到C柱上,在移动过程中可放在B柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2) A、B、C三根细柱上的圆盘都要保持上小下大的顺序;

任务:设An为2n个圆盘完成上述任务所需的最少移动次数,对于输入的n,输出An。

输入

输入文件hanoi.in为一个正整数n,表示在A柱上放有2n个圆盘。

输出

输出文件hanoi.out仅一行,包含一个正整数,为完成上述任务所需的最少移动次数An。

样例输入

1

样例输出

2

提示

对于50%的数据, 1<=n<=25

对于100% 数据, 1<=n<=200

设法建立An与An-1的递推关系式。

递归

#include<iostream>
using namespace std;
long long count=0;
void hanoi(int n)
{
	if(n<=0) return ;
	hanoi(n-1);
	count=count+2;
	hanoi(n-1);
}
int main()
{
	int n;
	cin>>n;
	hanoi(n);
	cout<<count;
}

非递归

#include<iostream>
using namespace std;
int main()
{
	int n;
	cin>>n;
	long long count=0;
	long long a[201];
	a[1]=2;
	for(int i=2;i<=n;i++)
	{
		a[i]=2+2*a[i-1];
	}
	cout<<a[n];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值