考研数学(2/9):一元函数微分学

目录

一元函数微分学

1. 导数的概念

1.1 导数的定义

1.2 导数的几何意义

1.3 导数的物理意义

1.4 导数的计算方法

2. 导数的应用

2.1 求函数的极值

2.2 求函数的拐点

2.3 求函数的单调区间

2.4 求函数的凹凸区间

2.5 求函数的渐近线

3. 高阶导数

3.1 高阶导数的定义

3.2 高阶导数的应用

3.3 高阶导数的性质

4. 微分

4.1 微分的定义

4.2 微分的几何意义

4.3 微分的应用

5. 考研真题分析

5.1 考查重点

5.2 难点

5.3 解题技巧

6. 总结


一元函数微分学

一元函数微分学是高等数学的重要组成部分,也是考研数学数一中必考的内容。本章主要介绍导数的概念、导数的应用、高阶导数、微分以及相关应用。

1. 导数的概念

1.1 导数的定义

导数 是指函数在某点处的变化率。

更准确地说,函数 f(x) 在 x = a 处的导数定义为:

f'(a) = lim(h->0) [f(a + h) - f(a)] / h

如果这个极限存在,那么称函数 f(x) 在 x = a 处可导。

导数也称为微商,记为 df(x)/dx 或 y'。

1.2 导数的几何意义

导数的几何意义是函数曲线在该点处的切线的斜率。

例如:

  • 函数 f(x) = x^2 在 x = 2 处的导数为 f'(2) = 4。

这意味着函数曲线 y = x^2 在点 (2, 4) 处的切线的斜率为 4。

1.3 导数的物理意义

导数的物理意义是函数在该点处的瞬时变化率。

例如:

  • 如果函数 f(t) 表示物体在时间 t 处的位移,那么 f'(t) 表示物体在时间 t 处的瞬时速度。

1.4 导数的计算方法

  • 求导公式: 一些基本函数的导数可以直接用公式计算,例如:

    • (x^n)' = nx^(n-1)
    • (sin(x))' = cos(x)
    • (cos(x))' = -sin(x)
    • (e^x)' = e^x
    • (ln(x))' = 1/x
  • 求导法则: 一些复杂函数的导数可以通过求导法则来计算,例如:

    • 和差法则: (f(x) ± g(x))' = f'(x) ± g'(x)
    • 积法则: (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)
    • 商法则: (f(x) / g(x))' = [f'(x) * g(x) - f(x) * g'(x)] / g^2(x)
    • 链式法则: (f(g(x)))' = f'(g(x)) * g'(x)

例如:

  • 求函数 f(x) = x^2 * sin(x) 的导数:

    • 使用积法则:f'(x) = (x^2)' * sin(x) + x^2 * (sin(x))' = 2x * sin(x) + x^2 * cos(x)

2. 导数的应用

2.1 求函数的极值

  • 极值点: 函数在某点处的导数为 0 或导数不存在,则该点称为函数的驻点。驻点可能是极值点,也可能不是极值点。
  • 极值判定: 可以使用一阶导数或二阶导数来判断驻点是否为极值点。

例如:

  • 求函数 f(x) = x^3 - 3x^2 + 2 的极值:

    • 求导:f'(x) = 3x^2 - 6x
    • 驻点:f'(x) = 0,解得 x = 0 或 x = 2。
    • 极值判定:f''(0) = -6 < 0,因此 x = 0 是极大值点;f''(2) = 6 > 0,因此 x = 2 是极小值点。

2.2 求函数的拐点

  • 拐点: 函数在某点处的二阶导数为 0 或二阶导数不存在,则该点称为函数的拐点。拐点是函数曲线的凹凸性发生变化的点。
  • 拐点判定: 可以使用二阶导数的符号变化来判断拐点。

例如:

  • 求函数 f(x) = x^3 - 3x^2 + 2 的拐点:

    • 求二阶导数:f''(x) = 6x - 6
    • 拐点:f''(x) = 0,解得 x = 1。
    • 拐点判定:f''(x) 在 x = 1 处由负变正,因此 x = 1 是拐点。

2.3 求函数的单调区间

  • 单调递增区间: 函数在某区间内的一阶导数大于 0,则该区间称为函数的单调递增区间。
  • 单调递减区间: 函数在某区间内的一阶导数小于 0,则该区间称为函数的单调递减区间。

例如:

  • 求函数 f(x) = x^3 - 3x^2 + 2 的单调区间:

    • 求导:f'(x) = 3x^2 - 6x
    • 驻点:f'(x) = 0,解得 x = 0 或 x = 2。
    • 单调区间:f'(x) > 0,解得 x < 0 或 x > 2,因此函数在 (-∞, 0) 和 (2, +∞) 上单调递增;f'(x) < 0,解得 0 < x < 2,因此函数在 (0, 2) 上单调递减。

2.4 求函数的凹凸区间

  • 凹区间: 函数在某区间内二阶导数大于 0,则该区间称为函数的凹区间。
  • 凸区间: 函数在某区间内二阶导数小于 0,则该区间称为函数的凸区间。

例如:

  • 求函数 f(x) = x^3 - 3x^2 + 2 的凹凸区间:

    • 求二阶导数:f''(x) = 6x - 6
    • 拐点:f''(x) = 0,解得 x = 1。
    • 凹凸区间:f''(x) > 0,解得 x > 1,因此函数在 (1, +∞) 上凹;f''(x) < 0,解得 x < 1,因此函数在 (-∞, 1) 上凸。

2.5 求函数的渐近线

  • 水平渐近线: 如果函数 f(x) 在 x 趋于无穷大时,lim(x->∞) f(x) = L,那么直线 y = L 称为函数 f(x) 的水平渐近线。
  • 垂直渐近线: 如果函数 f(x) 在 x 趋于 a 时,lim(x->a) f(x) = ∞,那么直线 x = a 称为函数 f(x) 的垂直渐近线。

例如:

  • 求函数 f(x) = (x^2 + 1) / (x - 1) 的渐近线:

    • 水平渐近线:lim(x->∞) f(x) = lim(x->∞) (x^2 + 1) / (x - 1) = lim(x->∞) (x + 1/x) / (1 - 1/x) = ∞,因此函数没有水平渐近线。
    • 垂直渐近线:lim(x->1) f(x) = lim(x->1) (x^2 + 1) / (x - 1) = ∞,因此直线 x = 1 是函数的垂直渐近线。

3. 高阶导数

3.1 高阶导数的定义

高阶导数 是指函数的多次求导。

例如:

  • 函数 f(x) 的二阶导数记为 f''(x) 或 d^2f(x)/dx^2。
  • 函数 f(x) 的三阶导数记为 f'''(x) 或 d^3f(x)/dx^3。
  • 函数 f(x) 的 n 阶导数记为 f^(n)(x) 或 d^nf(x)/dx^n。

3.2 高阶导数的应用

  • 泰勒公式: 泰勒公式可以用来将一个函数在某点附近展开成一个多项式,这个多项式可以用来近似地表示函数。
  • 麦克劳林公式: 麦克劳林公式是泰勒公式在 x = 0 处的特例。
  • 莱布尼兹公式: 莱布尼兹公式可以用来计算两个函数的乘积的 n 阶导数。

3.3 高阶导数的性质

  • 高阶导数的线性性质: (af(x) + bg(x))^(n) = af^(n)(x) + bg^(n)(x)
  • 高阶导数的乘积法则: (f(x) * g(x))^(n) = ∑(k=0 to n) C(n, k) * f^(k)(x) * g^(n-k)(x)

4. 微分

4.1 微分的定义

微分 是指函数在某点处的增量。

更准确地说,函数 f(x) 在 x = a 处的微分定义为:

df(a) = f'(a) * Δx

其中 Δx 是自变量的增量。

4.2 微分的几何意义

微分的几何意义是函数曲线在该点处的切线段的长度。

4.3 微分的应用

  • 近似计算: 微分可以用来近似地计算函数在某点附近的增量。
  • 误差估计: 微分可以用来估计函数在某点附近的误差。

例如:

  • 近似计算 sin(0.1):

    • 使用微分公式:dsin(x) = cos(x) * Δx
    • 将 x = 0 和 Δx = 0.1 代入公式:dsin(0) = cos(0) * 0.1 = 0.1
    • 因此,sin(0.1) ≈ sin(0) + dsin(0) = 0 + 0.1 = 0.1

5. 考研真题分析

5.1 考查重点

  • 导数的概念和性质
  • 导数的计算方法
  • 导数的应用:求函数的极值、拐点、单调区间、凹凸区间、渐近线
  • 高阶导数的概念和性质
  • 微分的概念和应用

5.2 难点

  • 导数的计算:求导法则、链式法则
  • 导数的应用:求函数的极值、拐点、单调区间、凹凸区间、渐近线
  • 高阶导数的应用:泰勒公式、麦克劳林公式
  • 微分的应用:近似计算、误差估计

5.3 解题技巧

  • 掌握导数的定义和性质
  • 熟练运用求导公式和求导法则
  • 理解导数的几何意义和物理意义
  • 灵活运用导数的应用
  • 掌握高阶导数的概念和性质
  • 理解微分的概念和应用

6. 总结

概念描述
导数函数在某点处的变化率
导数的几何意义函数曲线在该点处的切线的斜率
导数的物理意义函数在该点处的瞬时变化率
导数的计算方法求导公式、求导法则
导数的应用求函数的极值、拐点、单调区间、凹凸区间、渐近线
高阶导数函数的多次求导
微分函数在某点处的增量
微分的应用近似计算、误差估计

  • 30
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值