在线作图丨数据降维方法③——正交偏最小二乘方判别分析(OPLS-DA)

本文介绍了正交偏最小二乘方判别分析(OPLS-DA)的概念,它是PLS-DA的一种改进,能够滤除无关噪音并提高模型解析能力。OPLS-DA常用于代谢组学分析,通过建立回归模型来区分样本类别。此外,文章推荐了一个名为云图图的在线作图平台,用户可以免费绘制OPLS-DA图,只需上传数据和设置参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

​Question1:什么是PLS-DA?
与PCA不同,PLS是“有监督”模式的偏最小二乘法分析,也就是在分析数据时,已知样本的分组关系,这样可以更好的选择区分各组的特征变量,确定样本之间的关系。DA是判别分析,PLS-DA用偏最小二乘回归的方法,在对数据“降维”的同时,建立了回归模型,并对回归结果进行判别分析。
OPLS-DA是在PLS-DA的基础上,进行了正交变换的矫正,可以滤除与分类信息无关的噪音,提高了模型的解析能力和有效性。

Question2:什么是OPLS-DA?
OPLS是一种多因变量对多自变量的回归建模方法,其最大的特点是可以去除自变量X中与分类变量Y无关的数据变异,是分类信息主要集中在一个主成分中,从而模型变的简单和易于解释,其判别效果和主成分得分图的可视化效果更加明显。正交偏最小二乘法判别分析(orthogonal partial least-squares discrimination analysis,OPLS-DA)在代谢组学分析中应用较多,利用偏最小二乘回归建立代谢物表达量与样本类别之间的关系模型,同时还可以有效分离样本,预测样品类别。
PLS-DA/OPLS-DA建立了代谢物表达量与分组关系之间的模型,PLS-DA/OPLS-DA可以更好地获取组间差异信息,还可以对样品的分组进行预测,这是PCA做不到的。

Question3:如何不使用R语言在线绘制OPLS-DA图?
小编和他的小伙伴们开发了一个在线的作图小网站——云图图(https://www.cloudtutu.com/#/index

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值