在线作图|2分钟轻松绘制ROC曲线

ROC曲线是评估分类器性能的重要工具,本文介绍了ROC曲线的基本概念及其意义,并推荐了一个在线作图平台——云图图,提供简单易用的ROC曲线绘制步骤,包括数据上传、参数调整及下载结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Question 1:什么是ROC曲线?

受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。ROC曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果。它以假阳性概率(False positive rate)为横轴,真阳性(True positive rate)为纵轴组成坐标图,用曲线的形式展示受试者在特定刺激条件下由于采用不同的判断标准得出的不同结果。

ROC曲线是常见的统计分析方法之一,目前广泛应用于医学诊断、生物信息学、数据挖掘和机器学习等研究中,用来评判分类、检测结果的好坏。ROC曲线可用于评价生物标记物(biomarker)的表现以及比较不同打分方法(scoring methods)。
在这里插入图片描述

Question 2:ROC曲线有什么含义?

下面示例选择计算TPR和TNR这两个指标:
①ROC曲线越靠近左上角,则表示分类器越好,正确率越高;
②ROC曲线下的面积AUC,介于0.1和1之间,作为数值可以直观的评价分类器的好坏,数值越大,表示分类器越好,正确率越高。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值