Question 1:什么是ROC曲线?
受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。ROC曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果。它以假阳性概率(False positive rate)为横轴,真阳性(True positive rate)为纵轴组成坐标图,用曲线的形式展示受试者在特定刺激条件下由于采用不同的判断标准得出的不同结果。
ROC曲线是常见的统计分析方法之一,目前广泛应用于医学诊断、生物信息学、数据挖掘和机器学习等研究中,用来评判分类、检测结果的好坏。ROC曲线可用于评价生物标记物(biomarker)的表现以及比较不同打分方法(scoring methods)。
Question 2:ROC曲线有什么含义?
下面示例选择计算TPR和TNR这两个指标:
①ROC曲线越靠近左上角,则表示分类器越好,正确率越高;
②ROC曲线下的面积AUC,介于0.1和1之间,作为数值可以直观的评价分类器的好坏,数值越大,表示分类器越好,正确率越高。