我们有一维连续傅里叶变换对(即傅里叶正变换跟傅里叶逆变换),推广开来,我们就有了二维连续傅里叶变换对。
我们定义一个以t跟z为自变量的二维连续函数
其对应的傅里叶正变换为:
逆变换为
其实这跟一维的其实没什么区别,只不过多了一个变量z跟一个变量v,公式还是一样的。推广开来之后,其实性质没有变化。
一维的时候,只有u是频率变量,现在u跟v都是频率变量,傅里叶仍然是从空间域到频率域的一个转换。
以上我们都是以数学公式表达,其实涉及图像时,t跟z都是连续空间变量,而u跟v则是连续频率变量,由u跟v组成的域为连续频率域。
二维连续傅里叶变换对
最新推荐文章于 2024-10-06 10:32:41 发布