深度学习基础----残差网络

为什么要提出残差网络?

  • 深度网络不是越深越好。会出现梯度消失或者梯度爆炸,网络训练难度加大。
  • 何凯明做了实验,浅层网络比深层网络的训练误差和测试误差都要小。

  • 梯度消失:反向传播的时候,越到前面(浅层网络),梯度越小。原因之一是sigmoid函数两边很平缓,即两边梯度衰减是很快的。
  • shotcut使得反向传播的时候梯度可以快速回传,从而减小网络训练的困难

残差干了啥?

  • shortcut: 不经过权重和激活函数

  • 解释: x是前面模块的输出,F(x)是后面模块的输出。则下面一个模块的输入即是x+F(x),即模块输入之差是F(x)(即残差)

真实的网络?

  • 即每两层之间加一个shortcut
  • 如果两个block的维数不一样,则做线性变换将两个变成一样的就好

类似的网络DenseNet:

  • ResNet中网络是很深,但是可能没有贡献。
  • (想法都很简单,主要是你能够做得出来并且证明人家有效)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值