机器学习----pointwise,pairwise,listwise

Pointwise(二分类):

  • 把排序问题当二分类问题
  • 输入样本:三元组(q,c,y)
    • q:查询题目
    • c:查询结果(候选答案当中的一个)
    • y:判断c是否为q的正确答案(0<y<1)
  • 训练阶段:对于一个q
    • 结果正确:c=1
    • 结果错误:c=0
    • 损失函数交叉熵
  • 测试阶段
    • 二分类模型h:预测每一个候选结果
    • argmax:取得最佳结果

Pairwise(度量):

  • 考虑查询结果之间的关系
  • 输入样本:三元组(q,c+,c-)
    • q:查询题目
    • c+:正确查询结果(候选答案当中的一个)
    • c-:错误查询结果(候选答案当中的一个)
  • 损失函数
    • max:不会取到负值
    • m:边界阈值:使c+和c-之间的距离不会过大
    • 损失函数换种写法

Listwise(多分类):

  • pairwise和pointwise忽略了一个事实:从一系列候选中选择答案
  • 输入样本: q+所有c
    • q:查询题目
    • C(c1,c2,c3,...,c4)
  • 模型输出:
  • 归一化:S
  • 标签归一化:Y
  • 训练目标:最小化SYKL散度

  • 第二弹理解

  • 如果从采样的角度理解(可能存在错误)
    • point-wise: 其实不用负样本(虽然有些地方说,是从某个地方隔断然后 后面的是负样本)。
    • pair-wise: 一个正样本。
    • list-wise:一个负样本。

### Pointwise 方法的概念及其应用 #### 定义与基本原理 Pointwise 方法是一种用于排序学习(Learning to Rank)的技术之一,在计算机科学和机器学习领域具有重要意义。它通过将排名问题转化为回归或分类问题来解决[^1]。具体来说,Pointwise 方法的目标是对单个文档进行评分,并基于该评分预测其相对于其他文档的位置。 这种方法的核心在于定义一个目标函数,通常是一个损失函数,例如均方误差(Mean Squared Error, MSE),并通过优化这个函数来调整模型参数。由于 Pointwise 方法独立评估每个文档的分数,因此它可以看作一种简单的监督学习形式。 #### 实现方式 以下是实现 Pointwise 方法的一个简单例子: 假设我们有一个训练集 \( \{(x_i, y_i)\} \),其中 \( x_i \) 是特征向量,\( y_i \) 是对应的标签(可以是相关性得分)。我们可以构建如下线性模型并使用梯度下降法对其进行优化: ```python import numpy as np from sklearn.linear_model import LinearRegression # 假设这是我们的输入数据 X_train = np.array([[1], [2], [3]]) y_train = np.array([0.5, 1.0, 1.5]) # 使用线性回归作为示例 model = LinearRegression() model.fit(X_train, y_train) # 预测新样本的得分 X_test = np.array([[4]]) predictions = model.predict(X_test) print(f"Predicted score: {predictions}") ``` 上述代码展示了如何通过线性回归拟合数据并生成预测值。这种技术可以直接应用于 Pointwise 排序问题中的打分阶段。 #### 优点与局限性 Pointwise 方法的主要优势在于其实现相对简单且易于理解。然而,它的主要缺点也显而易见——忽略了不同文档之间的相互关系。这意味着即使两个文档的实际顺序可能很重要,Pointwise 方法也不会对此做出特别考虑。 相比之下,PairwiseListwise 方法则更注重于比较多个项目间的相对位置或者整体列表的质量评价标准。尽管如此,对于某些特定场景下只需要单独估计某个对象价值的情况而言,Pointwise 还是非常适用的选择。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值