【把句子变成embedding】Sentence-BERT

### Sentence-BERT 图解教程 #### 句子嵌入的重要性 为了有效地比较两个句子之间的相似度,传统的方法通常依赖于词袋模型或其他浅层特征提取技术。然而这些方法忽略了词语顺序和上下文信息。Sentence-BERT通过改进BERT架构来解决这一问题,能够生成高质量的固定长度向量表示用于衡量文本间的语义距离。 #### 架构概述 Sentence-BERT基于标准版BERT构建而成,主要区别在于引入了特殊的池化机制(pooling strategy),使得可以直接从输入序列得到整个句子级别的表达[^1]。 ```python from sentence_transformers import SentenceTransformer, util model = SentenceTransformer('all-MiniLM-L6-v2') sentences = ['这是一句话', '这是另一句话'] embeddings = model.encode(sentences) print(embeddings.shape) # 输出维度 (batch_size, embedding_dim) ``` #### 训练过程中的变化 相比于原始版本仅关注单句内部关系的做法,Sentence-BERT特别设计了一种对比损失函数(contrastive loss function),它鼓励正样本对之间保持更近的距离而负样本则尽可能远离。这种策略有助于提升下游任务如问答匹配、文档检索等方面的表现效果[^3]。 #### 应用实例展示 当应用于实际场景时,比如计算两篇新闻报道是否讲述相同事件;或是判断客服对话记录里顾客意图的一致性等问题上,都可以借助预先训练好的Sentence-BERT模型快速获得精准的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值