
HCP是质量很高的公开数据集,我最近在研究其中的结构像数据,整理了一下官方的预处理过程。
对于FreeSurfer, 我们在使用的时候,只需要一句recon-all就可以执行完所有的计算,接着就可以进行读取结果,关于recon-all的计算细节我们可能不怎么关心。这篇文章会涉及很多我们不知道也不会妨碍我们使用FreeSurfer 的原理性知识,所以读起来可能没那么容易。
如果有地方犯错,欢迎大家斧正。
Let‘s go!
PreFreeSurfer

1. MR gradient-nonlinearity-induced 失真校正
由于the custom HCP Skyra 的设计,使得HCP Skyra图像的梯度非线性影响更显著,特别在额叶。
失真校正中,每个梯度线圈产生的磁场用a spherical harmonic expansion来模拟。
校正然后使用FreeSurfer中的gradient_nonlin_unwarp工具包的自定义版(参考文献),这个定制版本的工具包计算了一个FSL格式的 warpfield,该warpfield通过使用专有的西门子梯度系数文件(我需要提供这个文件吗?)和图像的mm坐标空间(图像矩阵空间和扫描轴之间的旋转,sform斜的部分,sform将体素坐标与扫描仪的mm坐标空间相关联,由nii标准定义)来表示图像的空间失真。这个warpfield可以与其它转换连接起来或者通过样条插值(产生的模糊少于三线性插值)应用到图像上。
对于HCP Skyra(这是什么?),需要这样的校正(头部在isocenter以上约5cm),对于普通的扫描仪,不需要这种校正。
2. 随后使用FSL的FLIRT,将任何重复的run的T1w和T2w的图像与一个6自由度的刚体变换对齐。HCP数据中,只有质量评价中判断为“good”或“excellent”的图像被用于处理。对于很多被试,只有一个run(only a single run)被用于T1w或者T2w。
3. 为了更高的鲁棒性(系统在遇到异常或危险时保持稳定的能力),图像内部裁剪成较小的FOV(field of view)以去除颈部(150 mm in z in humans),这一步使用FSL的automated robustfov tool,并且图像与MNI空间模板进行12自由度(DOF)FLIRT配准对齐。这种对齐使得MNI空间脑mask在最终配准前被应用,以mask out任何残留的移位的头皮脂肪信号。最终的转换到输出平均空间是通过样条插值来最小化模糊(blurring)。

4. 接着,T1w和T2w平均图像对齐到MNI空间模板(具有0.7mm分辨率的HCP数据)使用刚体6自由度变换,由12自由度的仿射配准而得。这步对齐的目的是使图像的方向与模板大致,便于可视化。这一步还将坐标空间轴与MNI模板的坐标空间轴对齐,移除mm坐标空间和图像矩阵之间的旋转(i.e. 移除nii sform的倾斜量,因为在不同的成像软件平台上,倾斜sform的处理并不一致)。与之前在各个run之间平均的过程类似,