验证c和c的逆矩阵之积是否为单位矩阵_高等代数教学笔记4:矩阵 I

对于一般的线性方程组 (行列式为零或方程与未知量不一样多), Cramer 法则 不能 (直接) 应用, 于是需要新的方法, 对方程组的系数进行处理. 代数学处理问题的方式一般是整体考 虑, 记  7a2e2a33ae05a5d41687d77ce40efd43.png 为数域 02d919dd79ad90e6d0aa9439284b7c32.png 上的 m×n 矩阵的全体, 先研究这个集合的整体性质, 然后 再分别考虑特殊的矩阵. 而在代数层面上, 集合的整体性质是通过其中的运算关系来展示的, 所以 我们需要研究矩阵集合上的运算.

矩阵的运算

在 7a2e2a33ae05a5d41687d77ce40efd43.png上有自然定义的加法运算

e1de63349a65b0f37446c0cf023ae663.png

并且满足 如下性质 . 问题4.1 (1) 交换律: A + B = B + A;(2) 结合律: (A + B) + C = A + (B + C);(3) 零矩阵: 0 + A = A, 这里的 0 是所有元素都是 0 的矩阵;(4) 负元 (可以定义减法): 存在 B 使得 B + A = 0. (唯一的! 记为 -A.)这些性质的验证非常简单, 不过有必要提醒一下: 从现在开始, 我们会慢慢走进抽象的数学领域, 当然, 这个抽象的过程是一步步实现的, 不能一蹴而就. 最自然的抽象过程是在很多数学对象中寻找共性, 提炼出来就是一个抽象的数学概念. 比如, 上述的四个性质是代数学中所讨论的加法的共性, 这一类对象以后会有一个共同的名字——Abel 群; 更一般地, 只满足~(2)-(4), 不满足交换律的对象就是今后需要研究的群. 在  7a2e2a33ae05a5d41687d77ce40efd43.png 上可以定义数乘运算 ◦ (通常省略):

4aebc0941d72624e0316d08b812c6511.png

数乘运算不再是矩阵内部的运算, 而是常数与矩阵之间的运算. 而02d919dd79ad90e6d0aa9439284b7c32.png上有加 法和乘法运算, 7a2e2a33ae05a5d41687d77ce40efd43.png上有刚刚定义的加法运算, 因此我们需要考虑所有这些运算 之间的关系. 另外, 数域中有一个特殊元素 1, 它在数乘中的地位也是比较特殊的.  这些结合起来就自然有如下问题. 问题4.2 (5) 单位 1: 1 ◦ A = A;(6) (结合律) (kl) ◦ A = k ◦ (l ◦ A);(7) (分配律一) k ◦ (A + B) = k ◦ A + k ◦ B;(8) (分配律二) (k + l) ◦ A = k ◦ A + l ◦ A.我们将会发现, 满足加法和数乘运算及如上性质 (1) − (8) 的研究对象越来越 多, 比如前面提到的数域、多项式、平面向量、空间向量等, 它们最终融汇成一个 抽象的概念——线性空间, 这将把高等代数的研究提到一个新的高度. 矩阵中更重要的运算自然是 Cayley 利用变量替换方式引入的矩阵乘法. 按照 惯例, 我在上课时让学生们计算了两三个变量时的替换, 并且要求他们在课堂上计 算出结果. 这不是一个困难的过程, 学生们基本能得到结果, 如下图所示.

31cae94c79ee9cbdac5310c16755bfc6.png

由此得到一般矩阵的乘法规则. 不过, 奇怪的是, 即使用上面这个比较直观的图来 表示矩阵乘法, 学生们还是能够很快忘掉矩阵乘法怎么作, 其中的原 因耐人寻味.定义了矩阵乘法, 首先考虑一下其自身性质. 问题 4.3 (1) 矩阵乘法没有交换律, 举例有三个层次的原因: 交换了不能相乘、交换顺序能相乘但结果的阶数不同、方阵相乘也不一定可换.(2) 矩阵乘法满足结合律 (两种观点: 直接验证或从变量替换两次的角度看).(3) 单位矩阵:  725731ddb7ac91bf82a99c631c844860.png , 其中 9082b0ccda16a2316acf32d536da8e7f.png .(4) 逆矩阵 (类似于倒数) 不一定存在. 问题4.4 如果对任意 9082b0ccda16a2316acf32d536da8e7f.png, 都有 BA = A, 是否一定有 b52a7c1bcc8619bc6c8ceed538fd3f16.png ?矩阵乘积中的每一个元素都是一个求和, 这样的求和用行矩阵与列矩阵相乘 更为简洁直观, 应用起来也会方便很多. 问题4.5 (1) A,B 的乘积 AB 的第 i 行第 j 列元素是

0be88af1ca95a3f00ab4d73ff37eae30.png

用矩 阵乘法表示 4e60c95fec97f5f7c0a24cc61bc09411.png (实际上 , 以后看到求和号都可以转换为矩阵乘法!) .(2) A,B,C 的乘积 ABC 的第 i 行第 j 列元素如何用矩阵表示?问题4.6 (1) 矩阵乘法与加法有分配律.(2) 矩阵乘法与数乘有结合律.(3) 矩阵乘法与转置: (AB)′= B′A′.

矩阵与线性方程组

利用矩阵运算, 我们可以重新理解线性方程组. 问题4.7 (1) 方程组的形式: 6a3bb956ca24b28d1c8ca029ba81ef94.png(2) 矩阵乘法: 记 A 为其系数矩阵, 

02def74276b88a8ac0aa93efc47b61ff.png

则有矩阵乘法形式

54264174fe2f743befe7c097cf523b6f.png

(3) 列向量的加法与数乘: 记 A 的列向量为 

00fd28c2f6a597eadd69a15fb4ccce86.png

则有

3dd6a17fcbb7dafa1cb31592bad6af15.png

这里蕴含着列向量之间的关系——线性相关性.

(4) 行向量: 记

bc68227a1b6c48a9f82c123f3bff7663.png

为 A 的行向量, 则第 i 个方程可以简单 记为

2dfc66f5ee1fe5c61702af973b71f86e.png

方阵与多项式

矩阵中最值得研究的是方阵, 数域 02d919dd79ad90e6d0aa9439284b7c32.png 上 n 阶方阵的全体记为 257a173861a15af93ebc8a622db8ccb8.png , 它将成为 高等代数课程的主要研究对象. 在深入研究之前, 我们需要与前面学过的多项式和 行列式理论联系一下. 257a173861a15af93ebc8a622db8ccb8.png中有加法、数乘和乘法等三种运算, 这与多项式理论 有相通之处. 问题4.8 对任意 2aec537fcf4d004ef2939e065064b760.png , 我们定义:

a19a1b2c29ace6b7413d00e6ea0bf897.png

(1) 证明:

61b06646459c1605a6d445ba03d19481.png

(2) 对任意

7d397af07cd22850f81239483889a54b.png

我们记

8ae4d9689b3e2a726059b6ad5bce611e.png

称为 A 的多项式. 证明:

583da575d945168823e1a87d09433bcf.png

(3) 对任意 e43a58404f95d0f895184275ffff1c3d.png , 有 010fcf3d2bbf34795aa52c217d20cdf3.png .其中的问题 (3) 是矩阵多项式的既简单又重要的性质. 首先, 矩阵乘法的麻 烦之处是交换律的缺失, 而矩阵的多项式却具有交换性; 其次, 我们将会发现, 对 于给定矩阵 A, 很多与 A 有关的重要矩阵都是 A 的多项式, 这将是矩阵研究中的 一个重要突破口! 我们可以用如下问题来表述. 问题4.92aec537fcf4d004ef2939e065064b760.png, 定义映射

71c92981e9f7bc7752c53d9ff55eb1ec.png

证明: 对任意 286da9b695dfd937d19262eb011fc5f3.png , 有 8254173776de3739ba7cfdb5a72f7ae9.png对于上述映射, 如下问题对以后会很有用. 问题4.10 (1)  13f632792d5b38f533e0fd29ee2fcdbb.png 是单射吗? 或者, 集合

3c6a5bed4fb4ba21752aa937d833da8e.png

有什么特点? 这与我们前文研究多项式的因式分解时考虑的一些集合很相似!(2) 13f632792d5b38f533e0fd29ee2fcdbb.png 的像是什么? 13f632792d5b38f533e0fd29ee2fcdbb.png 是满射吗?剧透一下: 前面我们多次提到了

8da70a4f1c08d8a0345d5449347d9825.png

更一般地, 对于 n 阶方阵952eb26e8598d92de33fa9ac815123a7.png,

7915f38c6f048bc5af21fe889ae9d230.png

是一个神奇的多项式, 因为它满足 f(A) = 0! 不信就去验证 (超级大坑!).

最后举一个我们熟悉的例子: Fibonacci 数列

1740785ea225d8d1090fd1907c8bd192.png

这个递推关系可以用矩阵乘法来表达

1d4d0b5be420dbc6836ba550bebf8327.png

这似乎没什么. 我们再增加一项有

6b79c52ccbc5fd879a622ff3d9717f97.png

问题4.11 证明: 60e10d712c6f24a6ba10bbdfb9f0ceba.png由 (1) 或 (2), 求 Fibonacci 数列的通项公式就转化成求矩阵

962200716d8ff0c0504b80f8af93cc18.png

于是就要发展矩阵理论求这样的矩阵的 n 次幂, 这是后话. 方阵与行列式前面考虑广义 Laplace 展开的时候, 就得到了所谓的行列式的乘积公式. 问题4.12 设 e29f00bf86b7781561b9c077c01c9622.png , 则  |AB| = |A||B|.广义 Laplace 展开实际上是把两个 n 阶行列式的乘积转化成一个 2n 阶 的行列式. 这个想法非常有用. 我们今后会处理各种矩阵问题, 有时需要同时处理 好几个矩阵, 如果能用一种合理的方式把这些矩阵放到同一个大的矩阵里, 我们就 只需要处理一个矩阵即可, 这就是分块矩阵的思想. 还有另一个简单粗暴的想法: 把 |AB| 按列展开为很多行列式的和, 仔细观察这些行列式的特点!上述问题其实还可以推广. 问题4.13 设 4742e030eb1eac4faf6499a450f1c323.png . 若 m > n, 则 |AB| = 0;麻烦在于 A,B 都不是方阵, 那就把它们补充成方阵但不能改变它们的乘积,  A 要添加一些列, B 要添加一些行, 怎么添加?有了这个结论, 我们就可以计算一些特殊的行列式.问题4.14 计算行列式:

af57a8e795eb0b0e2e07bbda8a2f236e.png

这个行列式当然可以用行列式技巧计算 (比如拆项、镶边等), 不过, 用矩阵乘法的观点来看会容易的多. 类似的有 问题4.15 计算行列式:

3c8c4f3c15c409e9132270a96de9cba5.png

上式中的矩阵实际上是 A′A, 其中

1cad39941ed4988ba7dbecd9b2246b2d.png

不过, 如果换一下顺序就不一样了:

3c5bb681e9ab8f7e4a603e9dca9c1752.png

问题4.16 (Cauchy 不等式) 设  6ad941bea228f28a600d098858658938.png, 证明:

d341bc52131d850d807ec186634d3d65.png

Cauchy 不等式可能在中学就遇到过, 证明方法也不难: 配成平方和! 不过, 观察一下这些平方和, 它们与行列式有关系吗? 实际上关系很紧密. 我们有如下更一般的情形. 问题 4.14 (Binet-Cauchy 公式) 设 

cbe9e62a8b6b5533485ba8a91cb1c9cd.png

证明: 当 m < n 时,

45245f17bc0a5d0273b27e7511db4877.png

注意到

afbfec028616fa8ade1e84b15dc4298d.png

再用广义 Laplace 展开即可. 这样就把 A,B 的乘积问题转化成一个矩阵去研究, 这种方法在矩阵理论中是常用的. 特别地, 上式的右边我们有了一个简单的表达式, 把复杂矩阵分解为四块, 这样的形式简单且容易操作, 这是我们今后要经常使用的矩阵分块技巧.

特别地, 我们有 问题4.18ef11c004241ab90438d646f72a5a23b8.png , 则 ae91788d3111346a3deca90b4c83ee28.png . 当 m = 2 时就是 Cauchy 不等式.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值