有限域f9的特征是多少_有限群表示论(2): 表示的可约性

本节目录

  • (1). 子表示与商表示
  • (2). 可约表示与Maschke定理
  • (3). 初步的例子:
    的表示

子表示与商表示

前面引入了表示范畴, 而我们知道一个范畴中往往是有值得研究的子对象和商对象的.

定义 2.1.1

是有限群
的一个表示, 表示空间为
, 若
的线性子空间
满足对任意
,
均有
, 即

则称

-不变子空间
(G-invariant subspace). 在不引起歧义的情况下也直接叫不变子空间(注意区分一般线性空间的不变子空间).
显然
都是
-不变子空间.

-不变子空间时, 显然

的一个表示(表示空间为
), 称为
(由
诱导)的
子表示.

同时商空间

上的映射

也诱导了表示

, 称为
(模对应子表示)的
商表示.
就我目前的经验来看, 商表示似乎较少受到关注.

可约表示与Maschke定理

定义 2.2.1 如果有限群

的表示
存在异于零空间和表示空间自身的
-不变子空间, 则称
可约的(reducible), 否则称为不可约表示.

定义 2.2.2 对于有限群

的两个表示
, 表示空间为
,
, 则

诱导了一个

的表示, 表示空间为
, 称为表示
直和.

设有限群

有表示
, 表示空间为
, 若
能表示为有限个
-不变子空间的直和

相应的, 就有

如果我们有

皆不可约, 则称
完全可约的(completely reducible).
一个不可约表示当然是完全可约的.

下面的结果当作练习.

引理 2.2.3

有两个等价的表示
, 则
  • 可约当且仅当
    可约
  • 完全可约当且仅当
    完全可约

一个自然的问题是, 所有的表示一定是完全可约的吗? Maschke定理给出了表示完全可约的一个条件.

定理 2.2.4(Maschke) 有限群的有限维常表示是完全可约的.

证明思路
是有限群
的一个有限维不可约常表示, 表示空间为
.

的非平凡
-不变子空间
, 任取相应的补空间

并定义
的映射

显然
.

我们令

( 注意:
指的是
,
是常表示才保证它可逆
)
有一些较好的性质, 易得

(1).

(2).

(3).

(4).

进而推出
(5).

(6).

(上面系列结论的证明留给读者)
从而依(6)有

且由(5),
-不变的.

( 许多文献上把这个性质称为完全可约)
这样令
是所有
-不变子空间中极小的那一个(必然存在), 就必然有
不可约, 这样利用归纳法就不难证明这个定理了.
注记 (1). Maschke定理更标准的表述应该是, 有限群
和特征不整除
的域
对应的群代数是半单的.

(2). 有限群的模表示不一定完全可约, 反例可以考虑二阶循环群
在特征为2的域
上的二维表示.

所以常表示的性质是很好的; 以后我们还会用特征标证明这种直和分解在表示等价的意义下是唯一的.

初步的例子:

的表示

有限交换群的常表示其实是容易研究的, 例如可以证明

定理 2.3.1 交换群的不可约复表示一定是一维表示, 且n阶交换群有n个不同的一维表示.

留到以后证明.

我们现在考虑最低阶的非交换群, 三元对称群

的复表示.

首先它有平凡表示

符号表示

容易证明上面上面就是

的所有一维复表示.

例子 2.3.2

有一个自然的
置换表示, 定义为

这里

(
)是表示空间
的基, 则
是一个三维表示.
上面三种表示可以自然推广到任意阶对称群上.

是完全可约的.

考虑

张成的子空间
, 易得
-不变的, 按照定理2.2.4的构造, 我们取

-不变的且
, 对于相应的子表示有

其中

等价于平凡表示;
是一个不可约的二维表示, 称为
缩减表示.

(想了想, 张量积还是下一节和群代数一起引入好了; 如果有问题敬请指出)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值