计算机图形什么叫参数连续性,第5章_计算机图形学_ppt_大学课件预览_高等教育资讯网...

第 5章 曲线和曲面

第 5章 曲线和曲面

5.1 参数表示曲线和曲面的基础知识

5.1.1 曲线和曲面的表示方法

1.显式表示

显式表示是将曲线上各点的坐标表示成方程的形式,

且一个坐标变量能够用其余的坐标变量显式的表示出来。

2.隐式表示

隐式表示不要求坐标变量之间一一对应,它只是规定

了各坐标变量必须满足的关系。

3.参数表示

参数表示是将曲线上各点的坐标表示成参数方程的形

式。假定用 t表示参数,参数 t在 [0,1]区间内变化,当

t=0时,对应曲线段的起点,当 t=1时,对应曲线段的终

点。

第 5章 曲线和曲面

与显式、隐式方程相比,用参数方程表示曲线

和曲面更为通用,其优越性主要体现在以下几个

方面:

( 1)曲线的边界容易确定。

( 2)点动成线。

( 3)具有几何不变性。

( 4)易于变换。

( 5)易于处理斜率为无穷大的情形。

( 6)表示能力强。

第 5章 曲线和曲面

5.1.2 位置矢量, 切矢量, 法矢量, 曲率与

挠率

1,位置矢量

2,切矢量

3,法矢量

主法矢量, 副法矢量

法平面, 密切平面, 副法平面

]1,0[)](),(),([)( ?? ttztytxtP

)](')(')('[)(')( tztytxdtdPtPtT ???

第 5章 曲线和曲面

4,曲率和挠率

ctk c ?

??

??

?

0lim)(

ct c ?

??

??

??

0lim)(

第 5章 曲线和曲面

5.1.3 样条表示

1,插值, 逼近和拟合

给定一组称为控制点的有序坐标点,通过这些控制点,

可以构造出一条样条曲线:

如果样条曲线顺序通过每一个控制点,称为对这些控

制点进行插值,所构造的曲线称为插值样条曲线;

如果样条曲线在某种意义下最接近这些控制点(不一

定通过每个控制点),称为对这些控制点进行逼近,所构

造的曲线为逼近样条曲线;

插值和逼近统称为拟合。

第 5章 曲线和曲面

2,曲线的连续性

( 1) 参数连续性

?0阶参数连续性

?1阶参数连续性

?2阶参数连续性

( 2)几何连续性

?0阶几何连续性

?1阶几何连续性

?2阶几何连续性

第 5章 曲线和曲面

5.2 Hermite曲线

5.2.1 n次参数多项式曲线

给定 n+1个控制点,可以得到如下 n次参数多

项式曲线 p(t):

经过分解,上式可改写为如下形式:

通常,将 T·M矩阵称为 n次参数多项式曲线的

基函数(或称调和函数、混合函数)。

? ? ? ? [ 0,1 ] t1)()()()(

000

111

???

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??? CT

cba

cba

cba

tttztytxtp

zyx

zyx

znynxn

n

???

?

[ 0,1 ] t)( ???? GMTtp

第 5章 曲线和曲面

5.2.2 三次 Hermite曲线的定义

如果给定一段三次参数样条曲线的两个端点的位置矢量

为 p(0),p(1),切矢量为 p’(0),p’(1),则三次 Hermite

曲线的矩阵表示为:

通常,将 T称为矢量矩阵,将 Mh称为通用变换矩阵,将

Gh称为 Hermite系数,将 T?Mh称为 Hermite基函数。

? ?

[ 0,1 ]t

)1(

)0(

)1(

)0(

0001

0100

1233

1122

1

)(

'

'

23

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

???

?

??

???

p

p

p

p

ttt

GMTtp

hh

第 5章 曲线和曲面

5.3 Bezier曲线

5.3.1 Bezier曲线的定义

在空间给定 n+1个控制点,其位置矢量表示

为 Pi( i = 0,1,…,n)。可以逼近生成如下的 n

次 Bezier曲线:

其中,称为伯恩斯坦( Bernstein)基

函数,它的多项式表示为:

]1,0[)()(

0

,?? ?

?

ttBPtP

n

i

nii

)(,tB ni

]1,0[)1()!(! !)1()(,?????? ?? tttini nttCtB iniiniinni

第 5章 曲线和曲面

依次用直线段连接相邻的两个控制点 Pi,Pi+1,

( i = 0,1,…,n – 1),便得到一条 n边的折线

P0P1P2… Pn,将这样一条 n边的折线称为 Bezier控

制多边形(或特征多边形),简称为 Bezier多边

形。

Bezier曲线和它的控制多边形十分逼近,通

常认为控制多边形是对 Bezier曲线的大致勾画,

因此在设计中可以通过调整控制多边形的形状来

控制 Bezier曲线的形状。

第 5章 曲线和曲面

1.一次 Bezier曲线( n=1)

一次多项式,有两个控制点,其矩阵表示为:

显然,它是一条以 P0为起点、以 P1为终点的直线段。

? ? [ 0,1 ]t

01

11

1

)()()()(

1

0

1,111,00

1

0

1,

??

?

?

?

?

?

?

?

?

?

?

? ?

?

??? ?

?

P

P

t

tBPtBPtBPtP

i

ii

第 5章 曲线和曲面

2.二次 Bezier曲线( n=2)

二次多项式,有三个控制点,其矩阵表示为:

显然,它是一条以 P0为起点、以 P2为终点的抛物线。

? ? [ 0,1 ]t

001

022

121

1

)()()()()(

2

1

0

2

2,222,112,00

2

0

2,

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

???? ?

?

P

P

P

tt

tBPtBPtBPtBPtP

i

ii

第 5章 曲线和曲面

3.三次 Bezier曲线( n=3)

三次多项式,有四个控制点,其矩阵表示为:

可知,三次 Bezier曲线是一条以 P0为起点、以 P3为终

点的自由曲线。

? ? [ 0,1 ] t

0001

0033

0363

1331

1

)()()()()()(

3

2

1

0

23

3,333,223,113,00

3

0

3,

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??

?

????? ?

?

P

P

P

P

ttt

tBPtBPtBPtBPtBPtP

i

ii

第 5章 曲线和曲面

5.3.2 Bernstein基函数的性质

1.正性

2.端点性质

3.权性(规范性)

4.对称性

5.最大值

6.递推性

7.导函数

第 5章 曲线和曲面

5.3.3 Bezier曲线的性质

1,端点性质

?位置矢量

?切矢量

?二阶导矢

2,对称性

3,凸包性

4,几何不变性

5,变差缩减性

6,仿射不变性

第 5章 曲线和曲面

5.3.4 Bezier曲线的生成

1,Bezier曲线的生成算法

参见例 5-2

2,手工绘制一段 Bezier曲线

3,Bezier曲线的连接

4,Bezier曲线的升阶与降阶

第 5章 曲线和曲面

5.4 B样条曲线

5.4.1 B样条曲线的定义

在空间给定 m + n + 1个控制点,用向量 Pi表

示( i = 0,1,…,m + n),称 n次参数曲线:

为 n次 B样条的第 i段曲线 (i = 0,1,…,m)。

其中,Fl,n(t)是新引进的 B样条基函数,即:

这样一共有 m + 1段 B样条曲线,统称为 n次 B

样条曲线。

nlttFPtP

n

l

nllini ?,1,010)()(

0

,,???? ?

?

?,,

nltjlntCntF n

ln

j

j

n

j

nl ?,,,,1010)()1(!

1)(

0

1,???????? ?

?

?

?

第 5章 曲线和曲面

依次用直线段连接相邻的两个控制点 Pi+l与

Pi+l+1( l = 0,1,…,n –1),将得到的折线称为

第 i段的 B控制多边形。

由第 i段的 B控制多边形决定的 B样条曲线称为

第 i段 B样条曲线。

由于任意一段的 B样条曲线具有相同的几何性

质,因此取 i = 0,即第 0段的 B样条曲线进行研

究,第 0段的 B样条曲线定义式为:

?

?

?

n

l

nll tFPtP

0

,)()(

10 ?? t

第 5章 曲线和曲面

5.4.2 B样条曲线的表示及性质

以三次 B样条曲线为例:

1,三次 B样条曲线的矩阵表示

10

0141

0303

0363

1331

)1(

6

1

)(

3

2

1

0

23

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??

? t

P

P

P

P

ttttP

第 5章 曲线和曲面

2,三次 B样条曲线的端点性质

?位置矢量

?切矢量

?二阶导数

3,三次 B样条曲线的连续性

第 5章 曲线和曲面

5.4.3 B样条曲线的生成

1,B样条曲线的生成算法

参见例 5-9

2,反求三次 B样条曲线控制点

3,B样条曲线与 Bezier曲线的转换

第 5章 曲线和曲面

5.5 Coons曲面

5.5.1 参数曲面的基本概念

定义双参数曲面的方程为:

P(u,v),u,v∈ [0,1]

则曲面片的四条边界可以由参数曲线 P(u,0),

P(u,1),P(0,v),P(1,v)定义,曲面片的四个角

点可以由 P(0,0),P(0,1),P(1,0),P(1,1)定义。

第 5章 曲线和曲面

5.5.2 Coons曲面的定义

应用 Hermite曲线的基函数,可以构造出一个

双三次 Coons曲面,其矩阵表示为:

其中:

TT VU M C MvuP ?),(

]1[],1[ 2323 vvvVuuuU ??

?

?

?

?

?

?

?

?

?

?

?

?

???

?

?

0001

0100

1233

1122

M

第 5章 曲线和曲面

它称为角点信息矩阵。

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

矢扭量切向

切向量点角

u

v

C

uvuvuu

uvuvuu

vv

vv

11101110

01000100

11101110

01000100

第 5章 曲线和曲面

5.5.3 Coons曲面的拼合

设有两块相邻的曲面片 P与 Q,两块 Coons曲

面片的拼接分为沿 u方向的拼接和沿 v方向的拼接。

以沿 u方向的拼接为例,

1.若要满足 G 0连续,则要求 P与 Q有共同的

边界,即 。

2.若要满足 G 1连续,则要求 P与 Q在共同的

边界上有相同的切平面,即, k为

常数。 )1(0

qupu vkv ?

qp vv 10 ?

第 5章 曲线和曲面

5.6 Bezier曲面

5.6.1 Bezier曲面的定义及性质

1,Bezier曲面的定义

在空间给定 (n+1)× (m+1)个点 Pij(i=0,1… n;

j=0,1… m),则可逼近生成一个 n× m次的 Bezier曲面片,

其定义为:

称 Pij为 P(u,v)的控制顶点;把由两组多边形

Pi0Pi1… Pim (i=0,1,… n)和 P0jP1j… Pnj (j=0,1,… m)组成

的网格称为 P(u,v)的控制多面体(控制网格),记为 {Pij}。

同样,P(u,v)是对 {Pij}的逼近,{Pij}是 P(u,v)的大致形

状的勾画。

]1,0[,)()(),(,

0 0

,?? ? ?

? ?

vuvBuBPvuP mi

n

i

m

j

niij

第 5章 曲线和曲面

由 16个控制顶点所构成的控制网格可绘制一个双三次

(3× 3次 )Bezier曲面片,其矩阵表示为:

其中:

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??

?

0001

0033

0363

1331

bM

TTbb VGMUMvuP ?),(

? ?123 uuuU ? ? ?123 vvvV ?

?

?

?

?

?

?

?

?

?

?

?

?

?

33323130

23222120

13121110

03020100

PPPp

PPPP

PPPP

PPPP

G

第 5章 曲线和曲面

2,Bezier曲面的性质

Bezier曲面的许多性质与 Bezier曲线的许多性质完全

一致。

?端点性质

?边界线的位置

?凸包性

第 5章 曲线和曲面

5.6.2 Bezier曲面的生成

参见例 5-10

第 5章 曲线和曲面

5.7 B样条曲面

5.7.1 B样条曲面的定义

在空间给定 (n+1)× (m+1)个点 Pij(i=0,1… n;

j=0,1… m),则可逼近生成一个 n× m次的 B样条

曲面片,其定义为:

相比于 Bezier曲面,B样条曲面要更加逼近于

控制网格。

]1,0[,)()(),(,

0 0

,?? ? ?

? ?

vuvFuFPvuP mi

n

i

m

j

niij

第 5章 曲线和曲面

由 16个控制顶点所构成的控制网格可绘制一个

双三次 (3× 3次 )B样条曲面片,它的矩阵表示为:

其中:

?

?

?

?

?

?

?

?

?

?

?

?

?

?

??

?

0141

0303

0363

1331

6

1

BM

TTBB VGMUMvuP ?),(

? ?123 uuuU ? ? ?123 vvvV ?

?

?

?

?

?

?

?

?

?

?

?

?

?

33323130

23222120

13121110

03020100

PPPP

PPPP

PPPP

PPPP

G

第 5章 曲线和曲面

5.7.2 B样条曲面的生成

参见例 5-11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值