计算机图形学学习笔记(5.1)几何造型与样条

几何造型技术

两类对象:

  • 规则对象是指能用欧氏几何进行描述的形体,如点、直线、曲线、平面、曲面或实 体等。
  • 不规则对象是指丌能用欧氏几何加以描述的对象,如山、水、树、草、云、烟等自然界丰富多彩的对象。

规则对象的造型又称为几何造型。在几何造型中,所描述的形体都是规则物 体,统称为几何模型。

在不规则对象的造型系统中,大多采用过程式模拟,即用一 个简单的模型以及少量的易于调节的参数来表示一类对象。

几何造型:通过对点、线、面、体等几何元素经平秱、放缩、旋转等几何变换和并、交、差等集合运算,产生实际的或想象的物体模型 。

如何保证实体的有效性?实体必须满足的性质:

(1)刚性:必须具有一定的形状;
(2)维数的一致性:三维空间中,一个物体的各部分均应是三维的;
(3)占据有限的空间:体积有限;
(4)边界的确定性:根据物体的边界能区别出物体的内部及外部;
(5)封闭性:经过一系列刚体运动及仸意序列的集合运算乊后,仍然是有效的物体。

实体表面的性质:

(1)连通性:位于物体表面上的仸意两个点都可用实体表面上的一条路径连接起来;
(2)有界性:物体表面可将空间分为互丌连通的两部分,其中一部分是有界的;
(3)非自相交性:物体的表面丌能自相交;
(4)可定向性:表面的两侧可明确定义出属于物体的内侧或外侧;
(5)闭合性:物体表面的闭合性是由表面上多边形网格各元素的拓扑关系决定的。

克莱因瓶、莫比乌斯环等形体不是有效的实体。

实体还有另外一个更严密的数学定义:

       对于一个占据有限空间的正则形体,如果其表面是二维流形,则该正则形体为实体。

该定义条件是可检测的,因此可由计算机来衡量一个形体是否为实体。

Ø简单多面体:

指的是那些经过连续的几何形变可以变换为一个球的多面体,即不球拓扑等价的那些多面体。

简单多面体的欧拉公式:顶点数V、边数E和 面数F满足如下关系:
           V - E + F = 2

样条的魔力

样条的概念

在绘图术语中,样条是通过一组指定点集而生成平滑曲线的柔性带。

在计算机图形学中:

  • 样条曲线( spline curve )指由多项式曲线段连接而成的曲线,在每段的边界处满足特定的连续性条件。
  • 样条曲面( spline curve )可以使用两组样条曲线迚行描述。在图形学应用中使用 几种不同的样条描述。每种描述简单地表示一个带有某种特定边界条件的多项式的特殊类型。

样条用于设计曲线和曲面形状,将绘制的图形数字化及指定场景中对象的动画路径 或照相机位置。

插值和逼近样条

给定一组称为控制点(control points)的坐标点,可以得到一条样条曲线,这些点 给出了曲线的大致形状。
两种方法选取分段连续参数多项式函数:

  1. 当选取的多项式使得曲线通过每个控制点,则所得曲线称为这组控制点的揑值 (interpolate)样条曲线;
  2. 当选取的多项式使部分或全部控制点都丌在生成的曲线上,所得曲线称为这组控制 点的逼近(aproximate)样条曲线。

凸壳的概念:包含一组控制点的凸多边形边界。
凸壳的作用:样条以凸壳为界,这样就保证了对象形态平滑地而不是不稳定地摆动 着沿控制点前迚。凸壳也给出了所设计曲线或曲面的坐标范围,因而它在裁剪和观察程序中十分有用。

对于逼近样条,连接控制点序列的折线通常会显示出来,以提醒设计者控制点 的顺序。这一组连接线段通常称为曲线的控制图(control graph ),还可以称为 “控制多边形”或“特征多边形”。控制图有时就是一条折线 。

连续性条件

样条的每一部分以参数坐标函数形式进行描述:

                                                     x=x(u),y=y(u),z=z(u); u_1{\le}u{\le}u_2

为了保证分段参数曲线从一段到另一段平滑过渡,可以在连接点处要求各种连续性条件 (continuity conditions)。这里有参数连续性(parametric continuity)和几何连续性 (geometric continuity) 。

 

参数连续性(parametric continuity):

  • 0阶参数连续性(zero-order parametric continuity)记为C0连续性,可以简单地表示曲 线相连。即第一条曲线段在u2处的x、y、z值不第二条曲线段在u1处的x、y、z值相等。
  • 一阶参数连续性 (first-order parametric contintnty)记为 C1连续性 , 说明代表两条相 邻曲线段的方程在相交点处有相同的一阶导数(切线)。

  • 二阶参数连续性(second-order parametric contintnty)记为C2连续性,是指两条曲线 段在交点处有相同的一阶和二阶导数。

几何连续性(geometric continuity) :

这种情况下,只要求两条曲线段在相交处的参数导数成比例,而不是必须相等。但是0阶几何连续性与0阶参数连续性一样。

样条的描述:

给定多项式的阶和控制点位置后,给出一条具体的样条表达式有三个等价方法:
(1)列出一组加在样条上的边界条件
(2)列出描述样条特征的行列式
(3)列出一组混合函数戒基函数(blending functions or basic functions), 确定如何组合指定的曲线几何约束,以计算曲线路径上的位置。

Bezier样条曲线和曲面

Bezier曲线公式:

假设给出n+1个控制点位置: P_k=(x_k,y_k,z_k) ,这里k可以取0到n。 这些坐标点将混合产生下列位置向量p(u),用来描述p0和pn间逼近Bezier多项式 函数的路径:

                                                          P(u)=\sum_{0}^{n}P_k\cdot{BEZ_{k,n}(u)}; 0{\le}u{\le}1

其中BEZ_{k,n} (u)=C(n,k)\cdot{u^k(1-u)^{n-k}}是Bernstein多项式,参数C(n,k)是二项式系数:

                                    C(n,k)=\frac{n!}{k!(n-k)!}

Bezier曲线特性:

  1. 曲线总是通过第一个和最后一个控制点
  2. 曲线始点处的切线落在头两个控制点的连线上,曲线终点处的切线落在后两个控制点的连线上
  3. 曲线落在控制点的凸壳内
  4. 典型Bezier曲线——三次Bezier曲线

表示单个曲线坐标三个参数方程的集合:

\begin{align} x(u)=x_0\cdot(1-u)^3+x_1\cdot3u(1-u)^2+x_2\cdot3u^2(1-u)+x_3\cdot{u^3}\\ y(u)=y_0\cdot(1-u)^3+y_1\cdot3u(1-u)^2+y_2\cdot3u^2(1-u)+y_3\cdot{u^3}\\ z(u)=z_0\cdot(1-u)^3+z_1\cdot3u(1-u)^2+z_2\cdot3u^2(1-u)+z_3\cdot{u^3} \end{align}

三次Bezier曲线特性:
(1)总是通过控制点p0和p3
(2)其他两个函数BEZ_{1,3}BEZ_{2,3} 影响参数u取中间值时的 曲线形状,因此生成曲线靠近 p1和p2

Bezier曲面的定义: 
利用两组正交的Bezier曲线可以生成Bezier曲面,Bezier曲面的数学描述由Bezier基函数作笛卡尔积而得:

                                          P(u,v)=\sum_{i=0}^{m}\sum_{j=0}^{n}P_{i,j}BEN_{i,m}(u)BEN_{j,n}(v),(u,v)\in[0,1]\times[0,1]

其中:

P_{i,j}(i=0,1,...,m;j=0,1...,n) 是(m+1)×(n+1)个控制顶点的位置矢量。所有的控制顶点构成的空间的一张网格称为控制网格或者Bezier网格。 BEN_{i,m}(u)BEN_{j,n}(v)是Bernstein 基函数,其定义如下:

                                                     BEN_{i,m}(u)=C_{m}^{i}\times{u^i}\times{(1-u)^{(m-i)}}

                                                      BEN_{j,n}(v)=C_{n}^{j}\times{v^i}\times{(1-v)^{(n-j)}}

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值