计算机图形什么叫参数连续性,计算机图形学--参数三次插值样条曲线.ppt

计算机图形学--参数三次插值样条曲线

参数三次插值样条曲线 三次多项式方程是能表示曲线段的端点通过特定点且在连接处保持位置和斜率的连续性的最低阶次的方程。与更高次的多项式方程相比,三次样条只需要较少的计算和存储且较稳定。与低次多项式相比,三次样条在模拟任意曲线形状时更灵活。 参数三次插值样条的定义 给出一组控制点,Pk=(xk,yk,zk), k=0,1,2……n 可得到通过每个点的分段三次多项式曲线:三次插值拟合: 常用方法有: 均匀参数化(等距参数化) 节点在参数轴上呈等距分布, 正常数。 累加弦长参数化 弦线矢量 如实反映了型值点按弦长的分布情况,能够克服型值点按弦长分布不均匀的情况下采用均匀参数化所出现的问题。 向心参数化法 假设在一段曲线弧上的向心力与曲线切矢从该弧段始端至末端的转角成正比,加上一些简化假设,得到向心参数化法。此法尤其适用于非均匀型值点分布。 修正弦长参数化法 弦长修正系数Ki>=1。修正实际弦长偏短于弧长,减缓切向速度 参数区间的规格化 通常将参数区间 规格化为[0, 1], ,只需对参数化区间作如下处理: 参数三次样条性质 存在唯一性 收敛性 计算稳定 整体性 不易控制 自然三次样条是首批用于图形应用的样条曲线。是一种插值样条。 定义 已知n个型值点Pi(i=1,2,…n)且相邻的型值点不重合;若P(t)满足: 1.点Pi 在函数P(t)上; 2. P(t)在整个区间[P1, Pn] 上二次连续可导; 3. 在每个子区间[Pi, Pi+1](i=1,2,…n-1)上, Pi(t)都是参数t的三次多项式,而t以相邻型值点间弦长为取值范围。 则称P(t)为过型值点的自然三次样条函数。 注意:点Pi可以为三维空间中的点。 函数表达式(参数曲线): 优缺点: 优点:三次多项式在使用的灵活性和计算速度上提供一个合理的平衡方案,与高次多项式比较,运算较少且较稳定,与低次多项式比则在曲线拟合上更灵活。 缺点:不具有局部控制性,即一点的修改都会导 致整条曲线较大的变化。 Hermite三次插值样条 边界条件: P(0)=Pk P’(0)=DPk P(1)=Pk+1 P’(1)=DPk+1 向量方程: P(t)=at3 +bt2 +ct +d, (0≤t ≤ 1) 其中P的分量x: x(t)= axt3 +bxt2 +cxt +dx (0≤t ≤ 1) 曲线矩阵方程: P(t)= 以0,1代入,求出边界条件 求解多项式系数 将 展开 Cardinal样条 由两个相邻控制点坐标计算一个控制点处斜率值 给出相邻四个控制点,中间两个是曲线端点,其他点计算端点斜率 边界条件: P(0)=Pk P’(0)=(1-t)(Pk+1 –Pk-1)/2 P(1)=Pk+1 P’(1)=(1-t)(Pk+2 –Pk )/2 t:张量参数,控制样条与输入控制点间的松紧程度 向量方程: P(u)=au3 +bu2 +cu +d, (0≤u≤ 1) 求解多项式系数 将 展开 Kochanel-Bartels样条 模拟动画途径。引入两个附加参数到Cardinal样条约束方程中 P(0)=Pk P’(0)in=(1-t)/2[(1+b)(1-c)(Pk –Pk-1)+(1-b)(1+c)(Pk-1 –Pk)] P(1)=Pk+1 P’(1)out=(1-t)/2[(1+b)(1+c)(Pk+1 –Pk )+(1-b)(1-c)(Pk+2 –Pk+1 )] t:张量参数 ,控制曲线段的松紧; b:偏离参数,调整曲线断段在端点处弯曲的数值; c:连续参数,控制且向量在曲线段边界处的连续性 插值曲线的共同特点: 生成的曲线通过所有型值点; 不精确定; 无局部性。 Bezier曲线曲面 Bezier曲线的定义和性质 其中,Pi构成该Bezier曲线的特征多边形,Bi,n(t)是n次Bernstein基函数: 0?=1, 0!=1 (3)权性 由二项式定理可知:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值