怎么做arima模型_基本的预测模型示例—PowerBI、Weka

本文介绍了如何使用ARIMA模型预测销售量,包括模型的定义、运用流程以及参数估计和假设检验。此外,还展示了利用Weka进行线性回归预测房价的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、利用ARIMA模型预测销售量

ARIMA模型(英语:Autoregressive Integrated Moving Average model),自回归移动平均模型,时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。ARIMA(p,d,q)模型可以表示为:

adecf0259afef77786e9174b3d8e117b.png

L是滞后算子

ARIMA模型运用的流程

  1. 根据时间序列的散点图、自相关函数和偏自相关函数图识别其平稳性。
  2. 对非平稳的时间序列数据进行平稳化处理。直到处理后的自相关函数和偏自相关函数的数值非显著非零。
  3. 根据所识别出来的特征建立相应的时间序列模型。平稳化处理后,若偏自相关函数是截尾的,而自相关函数是拖尾的,则建立AR模型;若偏自相关函数是拖尾的,而自相关函数是截尾的,则建立MA模型;若偏自相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
  4. 参数估计,检验是否具有统计意义。
  5. 假设检验,判断(诊断)残差序列是否为白噪声序列。
  6. 利用已通过检验的模型进行预测。

来源于维基百科

数据类型

08869021ef3cd4d81f69ab03b79b4939.png

ARIMA模型运用

9f49cb3b33bb9cb46ccc0d06b30340c8.png

2、利用Weka线性回归简单的预测房价

房价数据预览

81303ee910b9fc0786103a70dca52625.gif

b998fa3301e183808f82c700ba3e4deb.png

5ab9aaf322e78a30c02fede024470506.gif

线性回归结果

c94793973daf74c390507ee1d24a7796.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值