python selenium爬虫豆瓣_使用selenium+requests爬取豆瓣小组讨论列表

本文介绍了一个使用selenium和requests爬取豆瓣小组租房信息的项目。通过模拟登录获取cookie,利用requests发送请求并解析数据,最后使用jinja2渲染HTML展示结果。项目代码已上传至GitHub,可针对特定关键词筛选租房帖子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

获取本文代码 · 我的GitHub

注:这个项目的代码会在我的GitHub持续优化、更新,而在本文中的代码则是最初版本的代码。

豆瓣小组

豆瓣有一个“小组”模块,有一些小组中会发布很多租房信息。在这里找租房信息的好处就在于,可以避免被那些第三方平台的中介忽悠,有更多的机会直接联系上房东,或有转租、寻求合租需求的人。

但是目前豆瓣租房小组存在的问题就是,信息高度不标准化,每一个人发布的信息的格式都各不相同,想要根据一些条件搜索到自己真正需要的信息比较困难,比如无法根据租金、地段、房型等条件去过滤,只能人工一个个去看,看一天下来,整个人都晕了,还不一定能找到中意的房子。

所以想到,搞一个爬虫呗,很多租房小组还是很活跃的,每天更新的信息量巨大,让人目不暇接,搞个爬虫自动化去爬取这些数据,并做一些简单的筛选,最终呈现在自己眼前,让自己找房子更有效率。

爬虫用到的技术点

使用selenium模拟登录,获取cookie,基本用法可以参见我的另一篇文章:使用selenium+requests登录网页并持久化cookie

使用requests库+cookie发送请求,获取数据。

使用lxml库和xpath语法解析网页数据,整理数据。

使用jinja2模板引擎渲染数据到HTML网页中,结构化地展示出来。

完整代码

下面的代码爬取了一个豆瓣租房小组的1000条讨论列表,从中筛选出了含有某些关键词的条目。假设将下面的代码保存在spider.py文件,则运行方式为:python spider.py 豆瓣用户名 豆瓣用户密码 讨论起始位置 要爬取的条数,代码中有详细的注释:

# coding:utf-8

# 豆瓣爬虫核心方法

from __future__ import unicode_literals

from selenium import webdriver

import requests

import time

import json

from lxml import etree

import random

from operator import itemgetter

from jinja2 import Environment, FileSystemLoader

import sys

reload(sys)

sys.setdefaultencoding('utf-8')

class DoubanSpider(object):

'''

豆瓣爬虫

'''

def __init__(self, user_name, password, headless = False):

'''

初始化

:param user_name: 豆瓣登录用户名

:param password: 豆瓣登录用户密码

:param headless: 是否显示webdriver浏览器窗口

:return: None

'''

self.user_name = user_name

self.password = password

self.headless = headless

# 登录

self.login()

def login(self):

'''

登录,并持久化cookie

:return: None

'''

# 豆瓣登录页面URL

login_url = 'https://www.douban.com/accounts/login'

# 获取chrome的配置

opt = webdriver.ChromeOptions()

# 在运行的时候不弹出浏览器窗口

if self.headless:

opt.set_headless()

# 获取driver对象

self.driver = webdriver.Chrome(chrome_options = opt)

# 打开登录页面

self.driver.get(login_url)

print '[login] o

爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值