两个向量之间的夹角公式_向量的内积

本文详细介绍了向量的内积,包括其定义、几何意义和坐标表示。重点阐述了两向量垂直的充分必要条件是内积为0,并提供了计算两向量夹角的余弦公式及实例。通过反余弦函数,可以求得两向量的夹角。同时,文章还探讨了内积的运算法则,并展示了如何计算向量在另一向量上的投影。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量的内积也叫向量的数量积、点积。我们定义两个向量的内积是一个数:

b4f3abc1c7bc4dca6e5b38beb3590f92.png

其中 b2383922f5577bb9727d805f64f5c10a.png 是这两个向量的夹角。

对于向量的内积,最重要的一个结论是:

定理1:两向量垂直的充分必要条件是它们的内积为 0,即

396cfa66b44a835f5401a312eb4b80f9.png

这个定理我们几乎不用证明了,因为从定义来看,如果两个向量都不零向量,则只能是夹角 b90eef014cfb42afc8c391c1e13c8d7e.png。而零向量的方向是任意的,零向量与任垂直何向量都垂直。

坐标下的内积:如果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值