第9章 信道容量和编码 信道编码的原理是在传输信息的同时加入信息冗余(与信源编码正好相反),通过信息冗余来达到信道差错控制的目的。当接收机利用该冗余信息进行译码时,不再需要反馈信息,这种方式称为前向纠错译码;当接收机利用该冗余信息对传输信息进行差错检验并将检验结果反馈,发送端根据反馈结果决定是否重发时,这种方式称为自动请求重发。 信道编码一般可以分成两大类,即分组码和卷积码。分组码编码时将输入信息分成不同的组,对各组信息分别进行独立编码,加入冗余信息,组与组之间是独立的,其译码也是分组独立译码。卷积码编码时将输入信息与一固定结构的编码器进行卷积,卷积的输出作为传输信息。由于卷积的关系,卷积码的输出信息是前后关联的,因此译码时,卷积码一般采用序列译码的方式。 9.1分组码 9.1.1分组码简介 1. 线性分组码 (1)基本概念 对于(n, k)线性分组码,生成矩阵是一个k×n的矩阵。设输入的信息为m=[m1,m2,…,mk],生成的码字为v=[v1,v2,…,vn],则v=mG,其中G为生成矩阵。生成矩阵的各行向量为码字空间的基底,由于一个子空间的基底选择不是唯一的,所以生成矩阵G的选择也不是唯一的。对于生成码字中前k位与信息完全相同的码称为系统码。这样,对于系统码其生成矩阵可以表示为: G=[Ik P] 式中:Ik表示k×k的单位矩阵;P表示一个k×(n-k)的矩阵。 由于(n, k)码的生成矩阵G,表示的是n维空间中的一个k维的子空间,那么一定存在一个n-k维的子空间与G表示的子空间正交,称为G行空间的零化空间。我们用一个(n-k)×n的矩阵H的行向量来表示这个零化空间。则有如下关系: GHT=0 或 HGT=0 矩阵H称为(n, k)码的一致校验矩阵。对于系统码的生成矩阵G=[ Ik, P],一致校验矩阵H有如下形式: H=[PT In-k] (2)伴随式与纠错 设发送的码字为V=[v1,v2,…,vn],接收的码字为R=[r1,r2,…,rn],则传输中的错误图样为E=[e1,e2,…,en],R=V+E。若E≠0,则表明传输中出现错误,因此通过在接收端检测RHT是否为零来检查是否出错,定义: S=RHT 为伴随式,它是一个n重序列。 S=RHT=(V+E)HT=VHT+EHT=EHT 可见伴随式只与错误图样有关,而与发送的码字无关。若E=0,则S=0表明没有错误;否则S≠0,伴随式与错误图样E有一个对应关系,通过这个对应关系,由伴随式S得到错误图样E,再将接收的码字R与错误图样E相加,就可得到纠错后的正确码字。 (3)汉明距离与汉明码 线性码的纠错能力与码的最小距离有关。定义一个码字的非零分量数为汉明重量。两码字间的不同符号数定义为两码字的汉明距离。一线性码两两互异的码字构成的汉明距离中,数值最小的称为该码的最小汉明距离dmin;非零码字中,重量最小的称为该码的最小汉明重量。对于线性分组码,它的最小汉明距离等于最小汉明重量。 对于一个二进制(n, k)线性分组码,当它的最小汉明距离为d时,用于检错时它最多可以发现d-1个错误;用于纠错时它最多可以纠正(d-1)/2位错误。若d≥t+t’+1 ,其中t’>t ,这时该线性码可以在纠t个错的同时发现 t’个错误。 汉明码的参数为: 码长: n=2m-1 信息位数: k=2m-m-1 其中,m为任意不小于2的整数。 一旦m给定,就可以构造出具体的(n, k)汉明码。 2. 循环码 循环码是具有以下特点的线性分组码:任意码组的每一次循环移位(左移或右移)得到的是码中的另一码组。即若(vn-1 vn-2 … v0)为(n, k)码的码字,则(vn-2 vn-3 … v0 vn-1)也是(n, k)码的码字。通常用多项式来表示循环码,如用 V(x)=vn-1xn-1+vn-2xn-2+…+v1x+v0 来表示码组(vn-1 vn-2 … v0),称V(x)为码多项式。对于循环码,xV(x),x2V(x),…,以及循环移位的线性组合均为循环码,且这些码多项式都是模xn-1的余式。 (1)生成多项式与编码电路 从(n, k)循环码的2k个码字中,挑出一个前面k-1位均为0的n-k次码多项式 g(x)=xn-k+gn-k-1xn-k-1+…+g1x+1 则xg(x),x2g(x),…,xk-1g(x)都是码字,且这k个码字线性无关,称g(x)为码的生成多项式。它是2k个码字集合中唯一的一个次数为n-k次的多项式。 用上述k个码字作为循环码的基底,并以
matlab的vitdec,通信原理MATLAB仿真教程课件第9章 信道容量和编码.ppt
最新推荐文章于 2023-10-30 23:09:19 发布
本文详细介绍了信道编码中的线性分组码,包括生成矩阵、一致校验矩阵的概念,以及如何通过伴随式进行纠错。此外,还探讨了汉明距离在纠错能力上的作用。接着,文章转向循环码,阐述了循环码的特性、生成多项式和编码电路。循环码通过其特殊的循环性质和码多项式在错误检测与纠正中展现出高效性能。
摘要由CSDN通过智能技术生成