c语言系统聚类upgma算法,R语言:UPGMA聚类分析和树状图

本文介绍了如何使用R语言中的UPGMA算法进行聚类分析和绘制树状图。首先模拟了微生物多样性的(样品、丰度)矩阵数据,然后计算了Bray Curtis相异指数,并通过upgma函数进行聚类。最后展示了不同类型的树状图,包括phylogram、cladogram、fan、unrooted和radial。
摘要由CSDN通过智能技术生成

导读

非加权组平均法(unweighted pair-group method with arithmetic means, UPGMA或average linkage)是一种较常用的聚类分析方法,可用于分析分类问题,也常被用于微生物多样性研究。下面介绍用R语言中的UPGMA函数分析微生物多样性数据和结果可视化的方法,内容如下:1)模拟(样品、丰度)矩阵数据;2)计算bray curtis相异指数和UPGMA聚类;3)绘制树状图。

1 模拟(样品、丰度)矩阵数据

set.seed(1995)

# 随机种子

data=matrix(abs(round(rnorm(200, mean=1000, sd=500))), 20, 10)

# 随机正整数,20行,20列

colnames(data)=paste("Species", 1:10, sep=".")

# 列名-细菌

rownames(data)=paste("Sample", 1:20, sep=".")

# 行名-样品

data_norm=data

for(i in 1:20){

sample_sum=apply(data, 1, sum)

for(j in 1:10){

data_norm[i,j]=data[i,j]/sample_sum[i]

}

}

# 标准化

data_norm

# 模拟完成的标准化矩阵数据如下:

Species.1 Species.2 Specie

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值