一、知识点
(一)有界性与最大值最小值定理
- 定理1(有界性与最大值最小值定理)
在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值.
(二)零点定理与介值定理
-
定理2(零点定理)
设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,且 f ( a ) f(a) f(a) 与 f ( b ) f(b) f(b) 异号(即 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)⋅f(b)<0),那么在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ,使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0. -
定理3(介值定理)
设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,且在这区间的端点取不同的函数值 f ( a ) = A f(a)=A f(a)=A 及 f ( b ) = B f(b)=B f(b)=B,那么,对于 A A A 与 B B B 之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ,使得 f ( ξ ) = C ( a < ξ < b ) f(\xi)=C (a<\xi<b) f(ξ)=C(a<ξ<b). -
推论
在闭区间上连续的函数必取得介于最大值 M M M 与最小值 m m m 之间的任何值.
(三)一致连续性
-
定义
设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义,如果对于任意给定的正数 ϵ \epsilon ϵ,总存在着正数 δ \delta δ,使得对于区间 I I I 上的任意两点 x 1 x_1 x1、 x 2 x_2 x2,当 ∣ x 1 − x 2 ∣ < δ \begin{vmatrix}x_1-x_2\end{vmatrix}<\delta x1−x2 <δ 时,就有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ \begin{vmatrix}f(x_1)-f(x_2)\end{vmatrix}<\epsilon f(x1)−f(x2) <ϵ,那么称函数 f ( x ) f(x) f(x) 在区间 I I I 上是一致连续的. -
定理4(一致连续性定理)
如果函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,那么它在该区间上一致连续.
二、练习题
- 假设函数 f ( x ) f(x) f(x) 在闭区间 [ 0 , 1 ] [0,1] [0,1] 上连续,并且对 [ 0 , 1 ] [0,1] [0,1] 上任一点 x x x 有 0 ≤ x ≤ 1 0\leq x \leq 1 0≤x≤1.试证明 [ 0 , 1 ] [0,1] [0,1] 中必存在一点 c c c, 使得 f ( c ) = c f(c)=c f(c)=c( c c c 称为函数 f ( x ) f(x) f(x) 的不动点).
- 证明:
设 F ( x ) = f ( x ) − x F(x)=f(x)-x F(x)=f(x)−x,则 F ( 0 ) = f ( 0 ) − 0 = f ( 0 ) ≥ 0 F(0)=f(0)-0=f(0)\geq 0 F(0)=f(0)−0=f(0)≥0, F ( 1 ) = f ( 1 ) − 1 ≤ 0 F(1)=f(1)-1\leq 0 F(1)=f(1)−1≤0
若 F ( 0 ) = f ( 0 ) = 0 F(0)=f(0)=0 F(0)=f(0)=0 或 F ( 1 ) = f ( 1 ) − 1 = 0 F(1)=f(1)-1=0 F(1)=f(1)−1=0,则 c = 0 c=0 c=