【高等数学&学习记录】闭区间上连续函数的性质

一、知识点

(一)有界性与最大值最小值定理

  • 定理1(有界性与最大值最小值定理)
    在闭区间上连续的函数在该区间上有界且一定能取得它的最大值和最小值.

(二)零点定理与介值定理

  • 定理2(零点定理)
    设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,且 f ( a ) f(a) f(a) f ( b ) f(b) f(b) 异号(即 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0),那么在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ,使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0.

  • 定理3(介值定理)
    设函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,且在这区间的端点取不同的函数值 f ( a ) = A f(a)=A f(a)=A f ( b ) = B f(b)=B f(b)=B,那么,对于 A A A B B B 之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ,使得 f ( ξ ) = C ( a < ξ < b ) f(\xi)=C (a<\xi<b) f(ξ)=C(a<ξ<b).

  • 推论
    在闭区间上连续的函数必取得介于最大值 M M M 与最小值 m m m 之间的任何值.


(三)一致连续性

  • 定义
    设函数 f ( x ) f(x) f(x) 在区间 I I I 上有定义,如果对于任意给定的正数 ϵ \epsilon ϵ,总存在着正数 δ \delta δ,使得对于区间 I I I 上的任意两点 x 1 x_1 x1 x 2 x_2 x2,当 ∣ x 1 − x 2 ∣ < δ \begin{vmatrix}x_1-x_2\end{vmatrix}<\delta x1x2 <δ 时,就有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ \begin{vmatrix}f(x_1)-f(x_2)\end{vmatrix}<\epsilon f(x1)f(x2) <ϵ,那么称函数 f ( x ) f(x) f(x) 在区间 I I I 上是一致连续的.

  • 定理4(一致连续性定理)
    如果函数 f ( x ) f(x) f(x) 在闭区间 [ a , b ] [a,b] [a,b] 上连续,那么它在该区间上一致连续.


二、练习题


  1. 假设函数 f ( x ) f(x) f(x) 在闭区间 [ 0 , 1 ] [0,1] [0,1] 上连续,并且对 [ 0 , 1 ] [0,1] [0,1] 上任一点 x x x 0 ≤ x ≤ 1 0\leq x \leq 1 0x1.试证明 [ 0 , 1 ] [0,1] [0,1] 中必存在一点 c c c, 使得 f ( c ) = c f(c)=c f(c)=c c c c 称为函数 f ( x ) f(x) f(x) 的不动点).
  • 证明:
    F ( x ) = f ( x ) − x F(x)=f(x)-x F(x)=f(x)x,则 F ( 0 ) = f ( 0 ) − 0 = f ( 0 ) ≥ 0 F(0)=f(0)-0=f(0)\geq 0 F(0)=f(0)0=f(0)0 F ( 1 ) = f ( 1 ) − 1 ≤ 0 F(1)=f(1)-1\leq 0 F(1)=f(1)10
    F ( 0 ) = f ( 0 ) = 0 F(0)=f(0)=0 F(0)=f(0)=0 F ( 1 ) = f ( 1 ) − 1 = 0 F(1)=f(1)-1=0 F(1)=f(1)1=0,则 c = 0 c=0 c=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值