本发明涉及路径规划技术,具体涉及基地图路径规划方法。
背景技术:
随着各项性能的提高,服务机器人可以在人们日常生活中完成越来越多的 任务,比如打扫卫生、移动物体等等。为了使任务完成得更加流畅,机器人必 须实现对指定移动目标的路径规划。路径规划依赖于室内地图,常用的室内地 图为二维栅格地图,然而二维栅格地图只考虑了某一高度平面的环境信息,太 高或者太低的障碍物都不能避免,因此也不能在复杂环境中使用。
技术实现要素:
本发明目的在于克服现有技术的不足,尤其解决二维栅格地图只考虑了某 一高度平面的环境信息,无法得知周围环境的准确三维结构,不能保证所规划 的路径上机器人不与障碍物发生碰撞的问题。
为解决上述技术问题,本发明提供一种地图路径规划方法,该方法采用三 维栅格地图,实现立体的路径规划,所述地图路径规划方法包括:采用激光传 感器采集周围环境的点云数据;用八叉树将点云地图转换为栅格地图;根据三 维栅格地图进行最优路径规划。
该发明方案的有益效果在于,通过将离散的点云数据转换成三维栅格地图, 实现三维栅格立体地图下的最优路径规划,使得机器人可以避开环境中的物体, 避免碰撞确保机器人行进中的安全。
附图说明
图1是本发明的实施例的基于八叉树表示的三维栅格地图路径规划系统示 意图。
具体实施方式
下面结合附图及具体实施例对本发明进行更加详细与完整的说明。可以理 解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。
图1是根据本发明的实施例的地图路径规划方法包括:S1、采用激光传感 器采集周围环境的点云数据;S2、用八叉树将点云地图转换为栅格地图;S3、 根据三维栅格地图进行最优路径规划。
具体而言,经过步骤S1对周围环境进行点云数据采集后,已经得到大量的 点云数据,需要用八叉树将点云地图转换为栅格地图,步骤S2描述如下:
八叉树是一种基于树形结构的层次化数据结构,如果树不是空的,那么八 叉树的任何一个节点的都只有八个或者零个子节点。
八叉树的每个节点与正方体C的一个子立方体对应,树根与正方体本身相 对应,如果要表示的形体V只有正方体C(V=C),那么要表示的形体V的八叉 树仅有树根,如果要表示的形体V不仅仅是正方体(V≠C),则将C等分为八 个子立方体,每个子立方体与树根的一个子节点相对应。只要某个子立方体不 是完全空白或完全为V所占据,就要被八等分,从而对应的节点也就有了八个 子节点。这样的递归判断、分割一直要进行到节点所对应的立方体或是完全空 白,或是完全为V占据,
步骤S3是最优路径规划操作,对栅格地图内的路径规划需要考虑机器人尺 寸大小,旋转动作和停止动作。机器人的尺寸大小可以用来判断是否会与周边 物体有碰撞的危险,而机器人运动时则要判断执行旋转动作和停止动作时是否 具备足够的空间,同样避免碰撞的危险,考虑到这些因素的路径规划算法流程 如下:
S31:在八叉树结构的栅格地图内部邻域内遍历可通行栅格;
S32:检测S31中得到的栅格位置有没有满足机器人本体尺寸的自由空间, 如果有则转至S33,没有的话转至S34;
S33:检测S31中得到的栅格位置处是否具有足够机器人执行旋转运动所需 的空间,如果没有就放弃当前栅格并回到S31,否则转至S34;
S34:检测S31中得到的栅格位置处是否具有足够机器人执行停止动作所需 的空间,如果没有的话放弃当前栅格并回到S31,否则转至S35;
S35:机器人移动到该栅格位置处,如果该栅格处已经是目标点就转至S36, 否则转至S31;
S36:综合之前走过的栅格位置生成从初始位置到达目标栅格的路径。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限 制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、 组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。