用read_dl_classifier方法读取一个预训练网络,其中Halcon提供的预训练网络有:
"pretrained_dl_classifier_compact.hdl"和"pretrained_dl_classifier_enhanced.hdl"。
指定数据集路径,用read_dl_classifier_data_set方法获取带有标签的原始数据集。
预处理是一个成功分类器的重要组成部分。 一个好的预处理程序将强调相关细节并去除不必要的部分,用于深度学习分类器的输入图像需要采用特定格式(大小、通道数量、类型和数值范围)。 preprocess_dl_classifier_images方法相应地预处理一个图像元组。预处理整个数据集并将数据保存到磁盘中,这样在训练过程中不需要浪费时间进行预处理。
对数据集进行预处理,一般都是去除背景,取待检测对象的最小外接矩形,然后通过调用preprocess_dl_classifier_images方法进行处理。
用split_dl_classifier_data_set方法将读取的数据集进行分割,一般来说训练集70%,验证集15%,测试集15%。
训练集被直接用于训练并被赋予train_dl_classifier_batch方法,验证集在训练期间间接使用,以评估分类器看不见数据的成功,尝试改进您基于验证集的结果(例如,通过调整超参数或改变预处理,测试集用于泛化的最终检查在尝试优化验证错误后很少进行评估。
设置参数:类名、批量大小、运行环境、学习率、学习率在几个周期后减少多少、周期数、动量、正则化参数。