halcon 深度学习标注_深度学习in Halcon流程

本文详细介绍了在Halcon中进行深度学习标注和训练的过程,包括数据集读取、预处理、数据集分割、训练参数设置、模型训练与优化、Top-1 error计算及混淆矩阵的应用。通过预处理去除背景,使用train_dl_classifier_batch进行训练,并通过plot_dl_classifier_training_progress监控进度。最终,评估分类器在测试集上的性能,展示分类结果和混淆矩阵,以理解模型的分类质量。
摘要由CSDN通过智能技术生成

用read_dl_classifier方法读取一个预训练网络,其中Halcon提供的预训练网络有:

"pretrained_dl_classifier_compact.hdl"和"pretrained_dl_classifier_enhanced.hdl"。

指定数据集路径,用read_dl_classifier_data_set方法获取带有标签的原始数据集。

预处理是一个成功分类器的重要组成部分。 一个好的预处理程序将强调相关细节并去除不必要的部分,用于深度学习分类器的输入图像需要采用特定格式(大小、通道数量、类型和数值范围)。 preprocess_dl_classifier_images方法相应地预处理一个图像元组。预处理整个数据集并将数据保存到磁盘中,这样在训练过程中不需要浪费时间进行预处理。

对数据集进行预处理,一般都是去除背景,取待检测对象的最小外接矩形,然后通过调用preprocess_dl_classifier_images方法进行处理。

用split_dl_classifier_data_set方法将读取的数据集进行分割,一般来说训练集70%,验证集15%,测试集15%。

训练集被直接用于训练并被赋予train_dl_classifier_batch方法,验证集在训练期间间接使用,以评估分类器看不见数据的成功,尝试改进您基于验证集的结果(例如,通过调整超参数或改变预处理,测试集用于泛化的最终检查在尝试优化验证错误后很少进行评估。

设置参数:类名、批量大小、运行环境、学习率、学习率在几个周期后减少多少、周期数、动量、正则化参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值