本篇笔记主要围绕向量组的线性表示、线性相关和线性无关介绍相关定理,这些定理在做证明题时会经常用到,需要重点掌握和运用。
1 相关定理
★ 定理3.2.1:向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关 ⟺ {\Longleftrightarrow} ⟺至少有一个向量可由其余向量线性表示。
证明: ⟹ \Longrightarrow ⟹
因为向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关,
所以存在不全为0的数 k 1 , k 2 , . . . , k s k_1,k_2,...,k_s k1,k2,...,ks,使得
k 1 α 1 + k 2 α 2 + . . . + k s α s = O k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s=O k1α1+k2α2+...+ksαs=O,
不防设 k 1 ≠ 0 k_1{\neq}0 k1=0,上式两边同时除以 k 1 k_1 k1得
α 1 = ( − k 2 k 1 ) α 2 + . . . + ( − k s k 1 ) α s \alpha_1=(-\frac{k_2}{k_1})\alpha_2+...+(-\frac{k_s}{k_1})\alpha_s α1=(−k1k2)α2+...+(−k1ks)αs
即 α 1 \alpha_1 α1可由 α 2 , . . . , α s \alpha_2,...,\alpha_s α2,...,αs线性表示。
⟸ \Longleftarrow ⟸
不防设 α 1 \alpha_1 α1可由其余向量线性表示,即存在不全为0的数 m 1 , m 2 , . . . , m s − 1 m_1,m_2,...,m_{s-1} m1,m2,...,ms−1,使得
α 1 = m 1 α 2 + m 2 α 3 + . . . + m s − 1 α s \alpha_1=m_1\alpha_2+m_2\alpha_3+...+m_{s-1}\alpha_s α