线性代数学习笔记(二十三)——线性相关线性无关

本篇笔记主要围绕向量组的线性表示、线性相关和线性无关介绍相关定理,这些定理在做证明题时会经常用到,需要重点掌握和运用。

1 相关定理

★ 定理3.2.1:向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关 ⟺ {\Longleftrightarrow} 至少有一个向量可由其余向量线性表示。

证明: ⟹ \Longrightarrow
因为向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关,
所以存在不全为0的数 k 1 , k 2 , . . . , k s k_1,k_2,...,k_s k1,k2,...,ks,使得
k 1 α 1 + k 2 α 2 + . . . + k s α s = O k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s=O k1α1+k2α2+...+ksαs=O
不防设 k 1 ≠ 0 k_1{\neq}0 k1=0,上式两边同时除以 k 1 k_1 k1
α 1 = ( − k 2 k 1 ) α 2 + . . . + ( − k s k 1 ) α s \alpha_1=(-\frac{k_2}{k_1})\alpha_2+...+(-\frac{k_s}{k_1})\alpha_s α1=(k1k2)α2+...+(k1ks)αs
α 1 \alpha_1 α1可由 α 2 , . . . , α s \alpha_2,...,\alpha_s α2,...,αs线性表示。

⟸ \Longleftarrow
不防设 α 1 \alpha_1 α1可由其余向量线性表示,即存在不全为0的数 m 1 , m 2 , . . . , m s − 1 m_1,m_2,...,m_{s-1} m1,m2,...,ms1,使得
α 1 = m 1 α 2 + m 2 α 3 + . . . + m s − 1 α s \alpha_1=m_1\alpha_2+m_2\alpha_3+...+m_{s-1}\alpha_s α1=m1α2+m2α3+...+ms1αs
所以 − α 1 + m 1 α 2 + m 2 α 3 + . . . + m s − 1 α s = O -\alpha_1+m_1\alpha_2+m_2\alpha_3+...+m_{s-1}\alpha_s=O α1+m1α2+m2α3+...+ms1αs=O
不管组合系数 m 1 , m 2 , . . . , m s − 1 m_1,m_2,...,m_{s-1} m1,m2,...,ms1是否全为0,
相关系数 − 1 , m 1 , m 2 , . . . , m s − 1 -1,m_1,m_2,...,m_{s-1} 1,m1,m2,...,ms1一定不全为0,
故向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关。

★★ 定理3.2.2:若向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关,而向量组 α 1 , α 2 , . . . , α s , β \alpha_1,\alpha_2,...,\alpha_s,\beta α1,α2,...,αs,β线性相关,则向量 β \beta β可由向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs唯一线性表示。

证明:因为向量组 α 1 , α 2 , . . . , α s , β \alpha_1,\alpha_2,...,\alpha_s,\beta α1,α2,...,αs,β线性相关,故存在一组不全为0的数 k 1 , k 2 , . . . , k s , k s + 1 k_1,k_2,...,k_s,k_{s+1} k1,k2,...,ks,ks+1,使得
k 1 α 1 + k 2 α 2 + . . . + k s α s + k s + 1 β = O k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s+k_{s+1}\beta=O k1α1+k2α2+...+ksαs+ks+1β=O
假设 k s + 1 = 0 k_{s+1}=0 ks+1=0,则 k 1 , k 2 , . . . , k s k_1,k_2,...,k_s k1,k2,...,ks不全为0,
k 1 α 1 + k 2 α 2 + . . . + k s α s = O k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s=O k1α1+k2α2+...+ksαs=O
这与 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关矛盾,
k s + 1 ≠ 0 k_{s+1}{\neq}0 ks+1=0,所以
β = ( − k 1 k s + 1 ) α 1 + ( − k 2 k s + 1 ) α 2 + . . . + ( − k s k s + 1 ) α s \beta=(-\frac{k_1}{k_{s+1}})\alpha_1+(-\frac{k_2}{k_{s+1}})\alpha_2+...+(-\frac{k_s}{k_{s+1}})\alpha_s β=(ks+1k1)α1+(ks+1k2)α2+...+(ks+1ks)αs
β \beta β可由向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性表示。

下面证唯一性:
假设线性表示不唯一,即存在
β = m 1 α 1 + m 2 α 2 + . . . + m s α s \beta=m_1\alpha_1+m_2\alpha_2+...+m_s\alpha_s β=m1α1+m2α2+...+msαs

β = n 1 α 1 + n 2 α 2 + . . . + n s α s \beta=n_1\alpha_1+n_2\alpha_2+...+n_s\alpha_s β=n1α1+n2α2+...+nsαs
上面两式相减得:
( m 1 − n 1 ) α 1 + ( m 2 − n 2 ) α 2 + . . . + ( m s − n s ) α s = O (m_1-n_1)\alpha_1+(m_2-n_2)\alpha_2+...+(m_s-n_s)\alpha_s=O (m1n1)α1+(m2n2)α2+...+(msns)αs=O
由于 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关,所以必有
m i − n i = 0 m_i-n_i=0 mini=0(其中 i = 1 , 2 , . . . , s i=1,2,...,s i=1,2,...,s),
m 1 = n 1 , m 2 = n 2 , . . . , m s = n s m_1=n_1,m_2=n_2,...,m_s=n_s m1=n1,m2=n2,...,ms=ns
所以表示方法唯一。

定理3.2.3:(替换定理)若向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性无关,并且可由向量组 β 1 , β 2 , . . . β t \beta_1,\beta_2,...\beta_t β1,β2,...βt线性表示,则 s ≤ t s{\le}t st,并且可适当排列向量的次序,使得向量组 α 1 , α 2 , . . . , α s , β s + 1 , . . . , β t \alpha_1,\alpha_2,...,\alpha_s,\beta_{s+1},...,\beta_t α1,α2,...,αs,βs+1,...,βt与向量组 β 1 , β 2 , . . . β t \beta_1,\beta_2,...\beta_t β1,β2,...βt等价。

证明:略。

逆否命题等价描述为:若向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs可由向量组 β 1 , β 2 , . . . β t \beta_1,\beta_2,...\beta_t β1,β2,...βt线性表示,并且 s > t s>t s>t,则向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs线性相关。

该等价描述提供了证明向量线性相关的一种方法。

★★ 推论3.2.1:若 m > n m>n m>n,则 m m m n n n维向量必线性相关。
特别地, n + 1 n+1 n+1 n n n维向量必线性相关

向 量 个 数 > 向 量 维 数 ⟹ 线 性 相 关 \color{red}{向量个数>向量维数{\Longrightarrow}线性相关} >线

举例: ( 1 1 ) , ( 2 2 ) , ( 4 5 ) \begin{pmatrix}1\\1\end{pmatrix},\begin{pmatrix}2\\2\end{pmatrix},\begin{pmatrix}4\\5\end{pmatrix} (11),(22),(45)
向量个数:3,
向量维数:2,
线性相关。

★ 推论3.2.2:两个等价的线性无关向量组必含有相同个数的向量。

证明:结合向量组等价的定义,将替换定理3.2.3使用两次,即 s ≤ t , t ≤ s s{\le}t,t{\le}s st,ts,即 s = t s=t s=t

2 引用

《线性代数》高清教学视频 “惊叹号”系列 宋浩老师_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili_3.2 线性相关线性无关

  • 6
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值