【计算广告】浅谈RTA广告

本文探讨了RTA(Realtime API)在广告投放中的应用,它允许广告主根据实时用户数据决定是否展示广告,提高了广告的个性化和效率。通过对接腾讯媒体的实践,作者阐述了RTA的作用、实现思路以及与RTB的区别,同时指出RTA在数据安全方面的考量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因工作原因,我实践过腾讯媒体的RTA,本文简单分享我对RTA的理解以及思考,如有错误,欢迎斧正交流

什么是RTA?

RTA(Realtime API)是一种用于满足广告主实时、个性化的投放需求的技术手段,在用户点击广告时,媒体会将用户设备id传递给广告主,广告主基于自己的历史数据构建的模型判断该用户是否为自己的目标用户,如果是,则告诉媒体期望将广告曝光给该用户,这里对目标用户的定义是灵活的,如果广告主的目的是拉新,那么目标用户就是广告主数据库中没有记录的用户,如果广告主的目的是提高ROI,那么目标用户就是可能在产品中付费的用户。

简单而言,RTA的作用就是:将选择用户的权利交给广告主,让广告主判断是否需要当前用户,如果需要,媒体才将广告主的广告展示给用户,为了直观,画了张图:

0b460fa2d3bd9028ad68312f253c9343.png
RTA流程

当然,RTA理论上是这样,但实际上是否将广告主广告曝光给某个用户还是看媒体,我们在对接具体的媒体时,广告主通过RTA返回的值只是个参考,媒体除了参考RTA外,还会参考你的出价、ROI系数等等,然后再综合判断是否将广告曝光给该用户。

RTA的作用

在不使用RTA前,我们会通过广告的定向配置来告诉媒体我们希望将广告曝光给哪些用户,因为我个人工作中主要接触腾讯媒体,所以以腾讯媒体为例。

在创建广告时,我们可以配置广告的定向,如下图:

854696e04bab5a46d9d547866cc02229.png
广告定向设置

通过定向的配置,我们可以将广告投放给满足定向标签的用户,此外,在实际投放工作中,定向人群包也是常用的投放方式,以游戏广告主为例,广告主基于过去的历史数据,可以过滤出过去有过正向行为的用户,比如常登录、有付费、游戏时长、装备数等等,基于这些数据,筛选出一批用户(具体而言是这批用户对应的设备id)࿰

### 广告实时API(RTA)定义 广告实时API(Real-Time API, RTA)是一种技术接口,允许广告平台与外部系统之间实现实时数据交换和决策支持。通过这种机制,广告主可以动态调整其竞价策略、优化预算分配以及实现更精准的目标受众定位[^1]。 具体而言,在程序化广告生态系统中,RTA充当了一个桥梁角色,它使得需求方平台(DSPs)能够快速响应来自供应方平台(SSPs)发出的每一次展示机会请求,并基于预先设定好的逻辑或者机器学习型来决定是否参与竞拍以及出价金额大小[^2]。 ### 工作原理 当某个媒体位置即将被提供给潜在买家时: - SSP会向多个DSP发送一个包含上下文信息(如用户特征、设备类型、地理位置等详情)的通知; - 接收到通知后的各个DSP利用自己内部部署好的RTA服务端点迅速分析这些参数并作出回应; - 如果某位特定用户的属性符合既定条件,则相应地提交一份报价参与到公开拍卖当中去争取该次曝光权[^3]。 整个过程通常需要在几十毫秒之内完成以确保效率最大化的同时不影响用户体验质量。 ```python def rta_decision(user_data): """ Simulates an RTA decision-making process based on user data. Args: user_data (dict): A dictionary containing information about the potential ad recipient. Returns: float: Bid amount or zero indicating no bid interest. """ target_age_group = range(25, 40) preferred_location = ["New York", "Los Angeles"] if 'age' in user_data and 'location' in user_data: age = user_data['age'] location = user_data['location'] if age in target_age_group and location in preferred_location: return calculate_bid_value() # Hypothetical function to determine optimal bid value return 0.0 # No bid is placed when criteria aren't met ``` 上述代码片段展示了如何依据接收到的数据执行简单的RTA判断流程[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒编程-二两

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值