(五)资产组合的风险--方差或标准差(续)
接上一讲,同样,注意求资产组合方差的时候要加上两两协方差。如果考虑只有两种资产进行组合的情形,则为下面公式:
(六)收益率的相关系数--标准化协方差
协方差矩阵实际上依赖于资产的规模,其数值大小难以直观解释,所以用协方差除以对应标准差的乘积,得到相关矩阵。
根据柯西不等式,相关系数一定在-1到1之间。
(七)多元化减小风险的原理
利用相关系数改写两种资产组合的方差公式
如果
则上面公式变成一个完全平方式 ,进而
此时组合风险等于单个风险的加权平均,多元化无助于减小风险。
如果
,根据组合方差公式中权重与标准差都大于0,可得
也就是说,只要两种资产收益率不完全正相关,多元化就可以降低风险。
当
时,
多元化能完全消除风险。
3.1两种资产组合的有效集
(一)马科维茨投资组合理论的假设--2和3选一个
(1)单期投资
- 定义:期初投资,期末获得回报
- 例子:零息债券,欧式期权
- 地位:是分析多期投资的基础
(2)正态分布(选)
- 投资者知道投资收益率的概率分布
- 收益率满足正态分布
(3)二次效应函数(选)
投资者效用函数是二次的,即
(4)期望收益率和方差
用期望收益率衡量实际收益率,用收益率的方差衡量不确定性,假设投资者只关注期望收益率和方差。
(5)占优法则
- 同一收益水平,选风险低的
- 同一风险水平,选收益高的
(二)期望效用分析与均值方差分析的关系
- 均值和方差不能包含所有信息--想想随机变量
- 但一定条件下,期望效用函数能够只表示为均值和方差的函数
而这个条件就是假设2或假设3!
对于假设2,计算期末财富的任意阶矩
都是期望和方差的函数,所以仅由期望和方差就能完全确定随机变量
(三)二次效用假设和正态分布假设与实际不符的例子
- 二次效用函数风险厌恶递增,但实际上如果我的钱多了,我会愿意承担更多风险来投资。
- 正态分布是轴对称的,与股票的有限责任不一致
之前我们证明过只要两种资产的相关系数不是1,就可以通过组合来降低风险,那么我们应该如何进行资产组合呢?如何设定投资资产的比例?
下图给出了两种资产组合在不同比例下的收益率和标准差的变化: