数学建模债券投资组合_金融数学第04讲--投资组合理论

本文深入探讨了数学建模在债券投资组合中的应用,重点解析了马科维茨投资组合理论。内容涵盖了资产组合风险的方差和标准差计算、收益率相关系数及多元化减小风险的原理。通过分析两种资产的有效集,展示了如何通过选择合适的投资比例降低风险。理论中强调了正态分布和二次效应函数的假设,并讨论了期望效用与均值方差分析之间的关系。此外,文章还阐述了多元化效应对投资者的启示,指出通过增加资产种类可以化解部分风险,但无法消除系统风险。
摘要由CSDN通过智能技术生成

(五)资产组合的风险--方差或标准差(续)

接上一讲,同样,注意求资产组合方差的时候要加上两两协方差。如果考虑只有两种资产进行组合的情形,则为下面公式:

(六)收益率的相关系数--标准化协方差

协方差矩阵实际上依赖于资产的规模,其数值大小难以直观解释,所以用协方差除以对应标准差的乘积,得到相关矩阵。

根据柯西不等式,相关系数一定在-1到1之间。

(七)多元化减小风险的原理

利用相关系数改写两种资产组合的方差公式

如果

则上面公式变成一个完全平方式 ,进而

此时组合风险等于单个风险的加权平均,多元化无助于减小风险

如果

,根据组合方差公式中权重与标准差都大于0,可得

也就是说,只要两种资产收益率不完全正相关,多元化就可以降低风险

时,
多元化能完全消除风险

3.1两种资产组合的有效集

(一)马科维茨投资组合理论的假设--2和3选一个

(1)单期投资

  • 定义:期初投资,期末获得回报
  • 例子:零息债券,欧式期权
  • 地位:是分析多期投资的基础

(2)正态分布(选)

  • 投资者知道投资收益率的概率分布
  • 收益率满足正态分布

(3)二次效应函数(选)

投资者效用函数是二次的,即

(4)期望收益率和方差

用期望收益率衡量实际收益率,用收益率的方差衡量不确定性,假设投资者只关注期望收益率和方差

(5)占优法则

  • 同一收益水平,选风险低的
  • 同一风险水平,选收益高的

(二)期望效用分析与均值方差分析的关系

  • 均值和方差不能包含所有信息--想想随机变量
  • 一定条件下,期望效用函数能够只表示为均值和方差的函数

而这个条件就是假设2或假设3!

对于假设2,计算期末财富的任意阶矩

都是期望和方差的函数,所以仅由期望和方差就能完全确定随机变量

(三)二次效用假设和正态分布假设与实际不符的例子

  • 二次效用函数风险厌恶递增,但实际上如果我的钱多了,我会愿意承担更多风险来投资。
  • 正态分布是轴对称的,与股票的有限责任不一致

之前我们证明过只要两种资产的相关系数不是1,就可以通过组合来降低风险,那么我们应该如何进行资产组合呢?如何设定投资资产的比例

下图给出了两种资产组合在不同比例下的收益率和标准差的变化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值