包
一系列模块文件的结合体,表现形式就是一个文件夹 该文件夹内部通常会有一个__init__.py文件 包的本质还是一个模块 首次导入的包 先产生一个执行文件的名称空间 1.创建包下面的__init__.py文件的名称空间 2.执行包下面的__init__.py文件中的代码,将产生的名字放入init__.py文件的名称空间 3.在执行文件中拿到一个指向包下面的__init__.py文件名称空间的名字 在导如语句中, . 的左边肯定是一个包(文件夹)
1)产生一个全局名称空间,提供给包的,就代表包的名称空间
2)管理 包可以直接点出来使用的 名字
导包完成的三件事
1)编译形成包中__init__.py文件的pyc文件
2)执行__init__.py文件,形成一个全局名称空间,将__init__.py文件中所有名字存放其中,该名称空间就代表包的名称空间
3)在导包的文件中,产生一个与包名相同的名字,指向包的名称空间(__init__.py文件的全局名称空间)
当你作为包的设计者来说
1.当模块的功能特别多的情况下 应该分文件管理
2.每个模块之间为了避免后期模块改名的问题 你可以使用相对导入(包里面的文件都应该是被导入的模块)
站在包的开发者 如果使用绝对路径来管理的自己的模块 那么它只需要永远以包的路径为基准依次导入模块
站在包的使用者 你必须得将包所在的那个文件夹路径添加到system path中
直接使用包中模块
如果只是想作为普通文件夹,py3中可以省略__init__文件,本质上文件夹也是包
python2如果要导入包 包下面必须要有__init__.py文件
导入的手段:1.指名道姓到某一个模块 | 2.指名道姓到某一个模块中的名字
包的管理
在包中采用相对导入管理模块或模块中的名字
在包的__init__.py文件或是包中任意一个模块中
. 代表当前文件所在目录
.. 代表当前文件所在目录的上一级目录
...代表上一级的上一级文件夹
注:.语法不能出包,因为包外的文件都能自执行,但拥有.开头导入的文件不能自执行
日志:日常的流水 => 日志文件,将程序运行过程中的状态或数据进行记录,一般都是记录到日志文件中
五个级别
logging.debug('调试')对应的数字 10 logging.info('信息') 20 logging.warning('警告') 30 logging.error('错误') 40 logging.critical('严重') 50
四个对象
logger对象 产生日志
filter对象 过滤
handler 句柄(控制日志输出的位置(文件或终端))
formatter对象 格式化
流程
import logging # 1.logger对象 logger = logging.getLogger('转账记录') # 2.filter对象 过滤 # 3.handler对象 hd1 = logging.FileHandler('a1.log',encoding='utf-8') # 输出到文件 hd2 = logging.FileHandler('a2.log',encoding='utf-8') # 输出到文件 hd3= logging.StreamHandler() # 输出到终端 不需要填写参数 # 4.formatter对象 fm1 = logging.Formatter( fmt='%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S %p', ) fm2 = logging.Formatter( fmt='%(asctime)s - %(name)s: %(message)s', datefmt='%Y-%m-%d', ) #5. 给logger对象绑定handler logger.addHandler(hd1) logger.addHandler(hd2) logger.addHandler(hd3) # 6.给handler绑定formatter对象 hd1.setFormatter(fm1) hd2.setFormatter(fm2) hd3.setFormatter(fm1) # 7.设置日志等级 logger.setLevel(20) # 8.记录日志 logger.debug('QWERTYUI风格都搞不好局')
logging配置字典
import os import logging.config # 定义三种日志输出格式 开始 standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \ '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字 simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s' # 定义日志输出格式 结束 """ 下面的两个变量对应的值 需要你手动修改 """ logfile_dir = os.path.dirname(__file__) # log文件的目录 logfile_name = 'a3.log' # log文件名 # 如果不存在定义的日志目录就创建一个 if not os.path.isdir(logfile_dir): os.mkdir(logfile_dir) # log文件的全路径 logfile_path = os.path.join(logfile_dir, logfile_name) # log配置字典 LOGGING_DIC = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'standard': { 'format': standard_format }, 'simple': { 'format': simple_format }, }, 'filters': {}, # 过滤日志 'handlers': { #打印到终端的日志 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', # 打印到屏幕 'formatter': 'simple' }, #打印到文件的日志,收集info及以上的日志 'default': { 'level': 'DEBUG', 'class': 'logging.handlers.RotatingFileHandler', # 保存到文件 'formatter': 'standard', 'filename': logfile_path, # 日志文件 'maxBytes': 1024*1024*5, # 日志大小 5M 'backupCount': 5, 'encoding': 'utf-8', # 日志文件的编码,再也不用担心中文log乱码了 }, }, 'loggers': { #logging.getLogger(__name__)拿到的logger配置 '': { 'handlers': ['default', 'console'], # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕 'level': 'DEBUG', 'propagate': True, # 向上(更高level的logger)传递 }, # 当键不存在的情况下 默认都会使用该k:v配置 }, } # 使用日志字典配置 logging.config.dictConfig(LOGGING_DIC) # 自动加载字典中的配置 logger1 = logging.getLogger('asajdjdskaj') logger1.debug('好好的 不要浮躁 努力就有收获')
# hashlib模块 加密的模块 import hashlib # 这个加密的过程是无法解密的 md = hashlib.sha3_256() # 生成一个帮你造密文的对象 # md.update('hello'.encode('utf-8')) # 往对象里传明文数据 update只能接受bytes类型的数据 md.update(b'Jason_@.') # 往对象里传明文数据 update只能接受bytes类型的数据 print(md.hexdigest()) # 获取明文数据对应的密文 不可逆加密:没有解密的加密方式 md5 解密方式:碰撞解密 加密的对象:用于传输的数据(字符串类型数据) 撞库 """ 1.不用的算法 使用方法是相同的 密文的长度越长 内部对应的算法越复杂 但是 1.时间消耗越长 2.占用空间更大 通常情况下使用md5算法 就可以足够了 """ import hashlib # 传入的内容 可以分多次传入 只要传入的内容相同 那么生成的密文肯定相同 md = hashlib.md5() md.update(b'areyouok?') md.update(b'are') md.update(b'you') md.update(b'ok?') print(md.hexdigest()) # 408ac8c66b1e988ee8e2862edea06cc7 # 408ac8c66b1e988ee8e2862edea06cc7 """ hashlib模块应用场景 1.密码的密文存储 2.校验文件内容是否一致 """ # 加盐处理 1.保证原数据过于简单,通过复杂的盐也可以提高解密难度 2.即使被碰撞解密成功,也不能直接识别盐与有效数据 cipher = hashlib.md5() cipher.update('前盐'.encode('utf-8')) cipher.update('需要加密的数据'.encode('utf-8')) cipher.update('后盐'.encode('utf-8')) print(cipher.hexdigest()) # 加密结果码 例子 import hashlib md = hashlib.md5() # 公司自己在每一个需要加密的数据之前 先手动添加一些内容 md.update(b'oldboy.com') # 加盐处理 md.update(b'hello') # 真正的内容 print(md.hexdigest()) # 动态加盐 import hashlib def get_md5(data): md = hashlib.md5() md.update('加盐'.encode('utf-8')) md.update(data.encode('utf-8')) return md.hexdigest() password = input('password>>>:') res = get_md5(password) print(res)
# openpyxl 比较火的操作excel表格的模块 """ 03版本之前 excel文件的后缀名 叫xls 03版本之后 excel文件的后缀名 叫xlsx xlwd 写excel xlrt 读excel xlwd和xlrt既支持03版本之前的excel文件也支持03版本之后的excel文件 openpyxl 只支持03版本之后的 xlsx
写
写 from openpyxl import Workbook wb = Workbook() # 先生成一个工作簿 wb1 = wb.create_sheet('index',0) # 创建一个表单页 后面可以通过数字控制位置 wb2 = wb.create_sheet('index1') wb1.title = 'login' # 后期可以通过表单页对象点title修改表单页名称 wb1['A3'] = 666 wb1['A4'] = 444 wb1.cell(row=6,column=3,value=88888888) wb1['A5'] = '=sum(A3:A4)' wb2['G6'] = 999 wb1.append(['username','age','hobby']) wb1.append(['lu',18,'study']) wb1.append(['tank',72,'吃生蚝']) wb1.append(['egon',84,'女教练']) wb1.append(['sean',23,'会所']) wb1.append(['nick',28,]) wb1.append(['nick','','秃头']) # 保存新建的excel文件 wb.save('test.xlsx')
from openpyxl import load_workbook # 读文件 wb = load_workbook('test.xlsx',read_only=True,data_only=True) print(wb) print(wb.sheetnames) # ['login', 'Sheet', 'index1'] print(wb['login']['A3'].value) print(wb['login']['A4'].value) print(wb['login']['A5'].value) # 通过代码产生的excel表格必须经过人为操作之后才能读取出函数计算出来的结果值 res = wb['login'] # print(res) ge1 = res.rows for i in ge1: for j in i: print(j.value)
深浅拷贝 值拷贝:应用场景最多 ls = [1, 'abc', [10]] ls1 = ls # ls1直接将ls中存放的地址拿过来 # ls内部的值发生任何变化,ls1都会随之变化 ls2 = ls.copy() # 新开辟列表空间,但列表中的地址都是直接从ls列表中拿来 # ls内部的可变类型值发生改变,ls2会随之变化 ls3 = deepcopy(ls) # 新开辟列表空间,ls列表中的不可变类型的地址直接拿过来,但是可变类型的地址一定重新开辟空间 # ls内部的所有类型的值发生改变,ls3都不会随之变化
import copy l = [1,2,[1,2]] l1 = l print(id(l),id(l1)) l1 = copy.copy(l) # 拷贝一份 ....... 浅拷贝 print(id(l),id(l1)) # l[0] = 222 # print(l,l1) l[2].append(666) print(l,l1) l1 = copy.deepcopy(l) l[2].append(666) print(l,l1)