深度学习之 有监督学习,无监督学习,分类,聚类,回归

本文介绍了深度学习中的三种学习方式:监督学习、无监督学习和半监督学习,以及相关的分类、聚类和回归概念。监督学习通过训练数据建立模型进行预测,无监督学习则在未知类别的情况下探索数据结构。分类和回归是监督学习的两种任务,聚类是无监督学习的重要方法。
摘要由CSDN通过智能技术生成

监督学习(Supervised learning)

无监督学习(Unsupervised learning)、

半监督学习(Semi-supervised learning),

分类

聚类

回归

 

监督学习

1、监督式学习(Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式( learning model),并依此模式推测新的实例。训练资料是由输入物件(通常是向量)和预期输出所组成。函数的输出可以是一个连续的值(称为回归分析),或是预测一个分类标签(称作分类)。

 

2、一个监督式学习者的任务在观察完一些训练范例(输入和预期输出)后,去预测这个函数对任何可能出现的输入的值的输出。要达到此目的,学习者必须以"合理"(见归纳偏向)的方式从现有的资料中一般化到非观察到的情况。在人类和动物感知中,则通常被称为概念学习(concept learning)。

 

3、监督式学习有两种形态的模型。最一般的,监督式学习产生一个全域模型,会将输入物件对应到预期输出。而另一种,则是将这种对应实作在一个区域模型。(如案例推论及最近邻居法)。为了解决一个给定的监督式学习的问题(手写辨识),必须考虑以下步骤:

1)决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值