通常情况下,我们只用关注产品结构本身的强度和刚度满足一定的要求或标准即可。但实际工程中,对于像细长类的结构、薄壁结构,我们还得考虑它的稳定性问题,这也就是我们通常所说的失稳问题或者塌陷问题。
在有限元分析中,我们主要通过屈曲分析 (Buckling Analysis) 去判断发生屈曲的临界载荷大小。而这其中根据实际结构和要求的不同,又分为线性屈曲分析(通常直接简称为屈曲分析)和后屈曲分析。当然,如何涉及非线性问题,后屈曲分析是必要的,不过对于后屈曲分析的实现方式也会更加麻烦一些,因为需要局部调整inp关键字达到目的,但只要掌握了关键点,依葫芦画瓢还是非常凑效的。
在Abaqus中,对于屈曲的计算考虑则依据结构的复杂性而定,简单的可以只考虑线性屈曲分析预估临界载荷大小;对于较复杂的模型,则可以考虑Riks 法进行后屈曲计算,从而可获取屈曲以后的结构响应情况;但对于涉及接触脱开等特别复杂的问题,可能得借助Explicit 来实现;而对于局部褶皱问题需要借助Static、Stabilize来实现。
01
线性屈曲分析
线性屈曲分析用于预估临界失稳载荷和失稳模态,所求得的屈曲特征值与所加载的载荷大小相乘就是临界失稳载荷。当然,对完善结构的屈曲问题,线性屈曲分析也为后屈曲分析引入缺陷(扰动)做好准备,这是非常关键的。
在Abaqus中,进行线性屈曲分析的方法是通过Buckle 进行的。