线性代数之——正交矩阵和 Gram-Schmidt 正交化

这部分我们有两个目标。一是了解正交性是怎么让 \(\hat x\)\(p\)\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵。二是学会怎么从原始向量中构建出正交向量。

1. 标准正交基

向量 \(q_1, \cdots, q_n\) 是标准正交的,如果它们满足如下条件:

\[q_i^Tq_j = \begin{cases} 0,&\text{if } i \not = j \quad(正交向量)\\ 1, &\text{if } i = j \quad(单位向量) \end{cases}\]

如果一个矩阵的列是标准正交的,我们称之为 \(Q\)。很容易,我们可以得到 \(Q^TQ=I\)

1240

\(Q\) 是方阵的时候,我们可以得到 \(Q^T=Q^{-1}\),也即转置等于逆。

  • 旋转(Rotation)

1240

旋转矩阵 \(Q\) 就是将任意向量逆时针旋转 \(\theta\),其逆矩阵 \(Q^{-1}\) 就是将任意向量顺时针旋转 \(\theta\)

1240

  • 置换(Permutation)

1240

置换矩阵的作用就是交换矩阵的行,在消元的时候有很大的作用。

1240

  • 镜像(Reflection)

如果 \(u\) 是任意单位向量,那么 \(Q = I-2uu^T\) 是一个正交矩阵。

1240

\[Q^2=Q^TQ=I\]

绕对称轴镜像两次还是它本身。

\(u_1=(1, 0)\)\(u_2=(1/\sqrt2, -1/\sqrt2)\),然后,我们可以得到两个正交矩阵。

1240

\(Q_1\) 将任意向量 \((x, y)\) 变为 \((-x, y)\)\(y\) 轴是镜像轴。\(Q_2\) 将任意向量 \((x, y)\) 变为 \((y, x)\)\(45°\) 轴是镜像轴。

1240

可以看到,旋转、置换和镜像都不会改变一个向量的长度。实际上,乘以任意正交矩阵都不会改变向量的长度

\[||Qx||=||x||\]

\[||Qx||^2 = (Qx)^T(Qx) = x^TQ^TQx = x^TIx=||x||^2\]

而且,正交矩阵也会保留两个向量的点积。

\[(Qx)^T(Qy) = x^TQ^TQy = x^Ty\]

2. 正交矩阵的投影

当矩阵 \(A\) 变成了正交矩阵 \(Q\),那么投影就会变得非常简单,我们不需要求任何逆矩阵。

\[A^TA\hat x=A^Tb \to \hat x=Q^Tb\]

\[p=A\hat x \to p=Q\hat x = QQ^Tb\]

\[P = A(A^TA)^{-1}A^T \to P = QQ^T\]

1240

\(Q\) 为方阵的时候,子空间为整个空间,有 \(Q^T=Q^{-1}\)\(\hat x = Q^Tb\) 就等同于 \(x=Q^{-1}b\),也就是有唯一解,\(b\) 的投影即为它本身。

1240

这就是傅里叶变化和所有应用数学中各种变化的基础,它们将向量或者函数分解成正交的小片,将这些小片加起来之后就回到了原函数。

1240

3. Gram-Schmidt 正交化和 \(A\)\(QR\) 分解

从上面我们可以看到正交对我们是非常有利的,现在我们就要找到一个方法来创造出标准正交的向量。假设我们有三个不相关的向量 \(a, b, c\),如果我们能构造出正交的三个向量 \(A,B,C\),那么再除以它们的长度就得到了标准正交向量。

首先,我们选取 \(A=a\),那么 \(B\) 必须垂直于 \(A\) 。我们用 \(b\) 减去其在 \(A\) 的投影,就得到了垂直于 \(A\) 的部分,这也就是我们要找的 \(B\)

\[B = b - \frac{A^Tb}{A^TA}A\]

接着,我们再用 \(c\) 减去其在 \(A\)\(B\) 的投影,就得到我们要找的 \(C\)

\[C = c - \frac{A^Tc}{A^TA}A-\frac{B^Tc}{B^TB}B\]

如果我们有更多的向量,那我们就用新的向量减去它在已经设定好的所有向量上的投影即可,最后,我们再除以它们各自的长度就得到了标准正交向量。

1240

可以看到,\(q_1=a/||a||\),没有涉及到其它向量,\(a\)\(q_1\)\(A\) 都位于一条线上。第二步中 \(b\) 也只是 \(A\)\(B\) 的线性组合,不涉及到后面的向量,\(a,b\)\(q_1,q_2\)\(A,B\) 都位于一个平面内。在每一个步骤中,\(a_1, a_2, \cdots, a_k\) 只是 \(q_1, q_2, \cdots, q_k\) 的线性组合,后面的 \(q\) 没有涉及到。

联系 \(A\)\(Q\) 的矩阵 \(R\) 是上三角形矩阵,有 \(A=QR\)

1240

任意 \(m×n\) 的矩阵 \(A\),如果其列是不相关的,那么就可以分解成 \(QR\)\(Q\) 的列是标准正交的,而 \(R\) 是上三角矩阵并且对角线元素为正,为向量 \(\cdots B,C\cdots\) 的长度。

然后,最小二乘就变成了

\[A^TA\hat x=A^Tb \to R^TQ^TQR\hat x=R^TQ^Tb \to R^TR\hat x=R^TQ^Tb \to R\hat x=Q^Tb \to \hat x = R^{-1}Q^Tb\]

获取更多精彩,请关注「seniusen」!
1240

转载于:https://www.cnblogs.com/seniusen/p/10023218.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值