偏微分复习


title: 数学物理方程复习
date: 2020-07-04 17:36:28
tags: [数学物理方程, 课程复习]

目录

基本概念

偏微分方程

关于多元未知函数 u ( x 1 , ⋯   , x n ) u\left(x_{1}, \cdots, x_{n}\right) u(x1,,xn)及其偏导数的关系式:
F ( x 1 , ⋯   , x n , u , D u , D 2 u , ⋯   , D m u ) = 0 F\left(x_{1}, \cdots, x_{n}, u, D u, D^{2} u, \cdots, D^{m} u\right)=0 F(x1,,xn,u,Du,D2u,,Dmu)=0

  1. 偏微分方程的阶数:未知函数偏导数最高阶数。
  2. 线性偏微分方程:未知函数和未知函数的各阶偏导都是线性的。
    ∑ ∣ α ∣ ≤ m c α ( x ) D α u = f ( x ) \sum_{|\alpha| \leq m} c_{\alpha}(x) D^{\alpha} u=f(x) αmcα(x)Dαu=f(x)
    • 其中 c α ( x ) ( ∣ α ∣ ≤ m ) c_{\alpha}(x)(|\alpha| \leq m) cα(x)(αm) f ( x ) f \left ( x \right ) f(x)都是不依赖于 u u u和它的各阶偏导。
    • 自由项:线性偏微分方程中不含 u u u及其偏导数的项。
    • 齐次方程:自由项为0
  3. 非线性偏微分方程
    • 拟线性偏微分方程:在非线性偏微分方程中,关于未知函数的所有最高阶偏导数都是线性的。
      ∑ ∣ α ∣ = m c α ( D m − 1 u , ⋯   , D u , u , x ) D α u + c ( D m − 1 u , ⋯   , D u , u , x ) = 0 \sum_{|\alpha|=m} c_{\alpha}\left(D^{m-1} u, \cdots, D u, u, x\right) D^{\alpha} u+c\left(D^{m-1} u, \cdots, D u, u, x\right)=0 α=mcα(Dm1u,,Du,u,x)Dαu+c(Dm1u,,Du,u,x)=0
    • 主部:在拟线性偏微分方程中,由最高阶偏导数组成的部分。
    • 半线性:主部的系数都是常数或是自变量的已知函数.
      ∑ ∣ α ∣ = m c α ( x ) D α u + c ( D m − 1 u , ⋯   , D u , u , x ) = 0 \sum_{|\alpha|=m} c_{\alpha}(x) D^{\alpha} u+c\left(D^{m-1} u, \cdots, D u, u, x\right)=0 α=mcα(x)Dαu+c(Dm1u,,Du,u,x)=0

经典方程

我们这门课程主要讲的就是三类基本方程。

  1. 弦振动方程。
  2. 热传导方程。
  3. Laplace方程。

定解问题

  1. 泛定方程:描绘普通规律的方程称为泛定方程。
  2. 定解条件:初始条件(Cauchy问题)和边界条件
  3. 三类典型边界条件:
    • 第一边界问题(Dirichlet问题)
      u ∣ Γ = φ ( x , y , z , t ) \left.u\right|_{\Gamma}=\varphi(x, y, z, t) uΓ=φ(x,y,z,t)
    • 第二边界问题(Neumann问题)
      ∂ u ∂ v ∣ Γ = φ ( x , y , z , t ) \left.\frac{\partial u}{\partial v}\right|_{\Gamma}=\varphi(x, y, z, t) vuΓ=φ(x,y,z,t)
    • 第三边界问题(Robin问题)
      ( ∂ u ∂ v + σ u ) ∣ Γ = φ ( x , y , z , t ) \left.\left(\frac{\partial u}{\partial v}+\sigma u\right)\right|_{\Gamma}=\varphi(x, y, z, t) (vu+σu)Γ=φ(x,y,z,t)
  4. 适定性:满足下面三个条件的定解问题,称为适定的。
    • 存在性:至少存在一个解
    • 唯一性:至多存在一个解
    • 稳定性:定解条件微小变动的情况下,解也只做微小变动。

二阶方程的特征理论和分类

二阶方程的特征

考虑一般的二阶线性方程:
∑ i , j = 1 n a i j ∂ 2 u ∂ x i ∂ x j + ∑ i = 1 n b i ∂ u ∂ x i + c u = f \sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial u}{\partial x_{i}}+c u=f i,j=1naijxixj2u+i=1nbixiu+cu=f
其中 a i j a_{ij} aij, b i b_i bi, c c c, f f f x 1 , ⋯   , x n x_{1}, \cdots, x_{n} x1,,xn的已知函数,且在 R n R^n Rn内连续可微, a i j = a j i a_{ij} = a_{ji} aij=aji.

特征曲面和特征方程

假设 S S S是R^n空间的一个曲面。
S : G ( x 1 , x 2 , ⋯   , x n ) = 0 S: G\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 S:G(x1,x2,,xn)=0
若:
∑ i , j = 1 n a i j ∂ G ∂ x i ∂ G ∂ x j = 0 \sum_{i, j=1}^{n} a_{i j} \frac{\partial G}{\partial x_{i}} \frac{\partial G}{\partial x_{j}}=0 i,j=1naijxiGxjG=0
S S S为特征曲面。

称:
∑ i , j = 1 n a i j α i α j = 0 \sum_{i, j=1}^{n} a_{i j} \alpha_{i} \alpha_{j}=0 i,j=1naijαiαj=0
为偏微分方程的特征方程。

特征方程在点 P ( x 1 0 , ⋯   , x n 0 ) P\left(x_{1}^{0}, \cdots, x_{n}^{0}\right) P(x10,,xn0)处的解 l ( α 1 , ⋯   , α n ) l\left(\alpha_{1}, \cdots, \alpha_{n}\right) l(α1,,αn)为偏微分方程在点 P P P处的特征方向。

两个自变量的情形

两个自变量的二阶拟线性偏微分方程的一般形式
a u x x + 2 b u x y + c u y y = F a u_{x x}+2 b u_{x y}+c u_{y y}=F auxx+2buxy+cuyy=F
假设 Γ \Gamma Γ是平面 x o y xoy xoy上的一条曲线。
Γ : x = φ ( t ) , y = ψ ( t ) \Gamma: x=\varphi(t), \quad y=\psi(t) Γ:x=φ(t),y=ψ(t)时,若
Δ = a ψ ′ 2 − 2 b φ ′ ψ ′ + c φ ′ 2 = 0 \Delta=a \psi^{\prime 2}-2 b \varphi^{\prime} \psi^{\prime}+c \varphi^{\prime 2} = 0 Δ=aψ22bφψ+cφ2=0

  • b b b前面为什么是负号:看笔记,是根据一个三元 ( U x x , U x y , U y y ) (U_{xx}, U_{xy}, U_{yy}) (Uxx,Uxy,Uyy)线性方程组行列式为0得出的特征方程。

Γ \Gamma Γ为特征曲线。
a d y 2 − 2 b d x d y + c d x 2 = 0 a \mathrm{d} y^{2}-2 b \mathrm{d} x \mathrm{d} y+c \mathrm{d} x^{2}=0 ady22bdxdy+cdx2=0
为偏微分方程的特征方程。

Γ : y = ψ ( x ) \Gamma: y=\psi(x) Γ:y=ψ(x) ( a ≠ 0 ) (a \neq 0) (a=0),有
d y d x = b ± b 2 − a c a \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{b \pm \sqrt{b^{2}-a c}}{a} dxdy=ab±b2ac

Γ : φ ( x , y ) = 0 \Gamma: \varphi(x, y)=0 Γ:φ(x,y)=0时,特征方程为
a φ x 2 + 2 b φ x φ y + c φ y 2 = 0 a \varphi_{x}^{2}+2 b \varphi_{x} \varphi_{y}+c \varphi_{y}^{2}=0 aφx2+2bφxφy+cφy2=0
这是因为
φ x d x + φ y d y = 0 \varphi_{x} dx + \varphi_{y} dy=0 φxdx+φydy=0
Γ : φ ( x , y ) = 0 \Gamma: \varphi(x, y)=0 Γ:φ(x,y)=0两边微分的结果。这与多个自变量的情形的定义是一致的。

二阶方程的分类

两个自变量的情形

考虑以下线性偏微分方程
a u x x + 2 b u x y + c u y y + d u x + e u y + g u = f a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+g u=f auxx+2buxy+cuyy+dux+euy+gu=f
其中 a , b , c , d , e , g , f 是 x , y a, b, c, d, e, g, f 是x,y a,b,c,d,e,g,fx,y的已知函数。

做变量变换
{ ξ = φ ( x , y ) η = ψ ( x , y ) \left\{\begin{array}{l} \xi=\varphi(x, y) \\ \eta=\psi(x, y) \end{array}\right. { ξ=φ(x,y)η=ψ(x,y)
方程可转换为
A ∂ 2 u ∂ ξ 2 + 2 B ∂ 2 u ∂ ξ ∂ η + C ∂ 2 u ∂ η 2 + D ∂ u ∂ ξ + E ∂ u ∂ η + G u = F A \frac{\partial^{2} u}{\partial \xi^{2}}+2 B \frac{\partial^{2} u}{\partial \xi \partial \eta}+C \frac{\partial^{2} u}{\partial \eta^{2}}+D \frac{\partial u}{\partial \xi}+E \frac{\partial u}{\partial \eta}+G u=F Aξ22u+2Bξη2u+Cη22u+Dξu+Eηu+Gu=F
二阶偏导
∂ 2 u ∂ x 2 = ∂ 2 u ∂ ξ 2 ( ∂ ξ ∂ x ) 2 + 2 ∂ 2 u ∂ x ∂ η ∂ x + ∂ 2 u ∂ n 2 ( ∂ η ∂ x ) 2 + ∂ 2 ξ ∂ x 2 + ∂ 2 η ∂ x 2 ∂ 2 u ∂ x ∂ y = ∂ 2 ∂ ε 2 ∂ ξ ∂ x ∂ ξ ∂ y + ∂ 2 u ∂ ξ ∂ n ( ∂ ξ ∂ x ∂ η ∂ y + ∂ ξ ∂ y ∂ η ∂ x ) + ∂ 2 ∂ x 2 ∂ η ∂ x ∂ η ∂ y + ∂ u ∂ x ∂ y + ∂ 2 ξ ∂ x ∂ y ∂ 2 u ∂ y 2 = ∂ 2 u ∂ ξ 2 ( ∂ ξ ∂ y ) 2 + 2 ∂ 2 η ∂ ξ ( η ) ∂ ξ ∂ y ∂ η ∂ y + ∂ 2 u ∂ n 2 ( ∂ η ∂ y ) 2 + ∂ 2 ξ ∂ y 2 + ∂ 2 η ∂ y 2 \begin{array}{c} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial \xi^{2}}\left(\frac{\partial \xi}{\partial x}\right)^{2}+2 \frac{\partial^{2} u}{\partial x} \frac{\partial \eta}{\partial x}+\frac{\partial^{2} u}{\partial n^{2}}\left(\frac{\partial \eta}{\partial x}\right)^{2}+\frac{\partial^{2} \xi}{\partial x^{2}}+\frac{\partial^{2} \eta}{\partial x^{2}} \\ \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2}}{\partial \varepsilon^{2}} \frac{\partial \xi}{\partial x} \frac{\partial \xi}{\partial y}+\frac{\partial^{2} u}{\partial \xi \partial n}\left(\frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial y}+\frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial x}\right)+\frac{\partial^{2}}{\partial x^{2}} \frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial y}+\frac{\partial u}{\partial x \partial y}+\frac{\partial^{2} \xi}{\partial x \partial y} \\ \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial^{2} u}{\partial \xi^{2}}\left(\frac{\partial \xi}{\partial y}\right)^{2}+2 \frac{\partial^{2} \eta}{\partial \xi(\eta)} \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y}+\frac{\partial^{2} u}{\partial n^{2}}\left(\frac{\partial \eta}{\partial y}\right)^{2}+\frac{\partial^{2} \xi}{\partial y^{2}}+\frac{\partial^{2} \eta}{\partial y^{2}} \end{array} x22u=ξ22u(xξ)2+2x2uxη+n22u(xη)2+x22ξ+x22ηxy2u=ε22xξyξ+ξn2u(xξyη+yξxη)+x22xηyη+xyu+xy2ξy22u=

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值