关于齐次坐标

读http://www.songho.ca/math/homogeneous/homogeneous.html

1.问题:

如何用计算机表达:两条平行的直线在投影空间中,相交在极远处。


2.解决的办法:

homogeneous坐标,即坐标增加一个分量。


3.为何称为homogeneous:

 英文单词homogeneous翻译为同质的,同类的。

齐次坐标(1,2,1), (2,4,2), (3,6,3)表示同一个坐标(1,2,1)。

齐次坐标属性:scale invariant,即scale (缩放)invariant(不变的)



4.如何解决两条平行直线相交问题:

假设两条平行直线:

Ax + By + C = 0;

Ax + By + D = 0;

A,B相同决定两条直线平行,C ≠ D决定他们是两条直线。普通情况下他们是永远不可能相交的。


现在有了齐次坐标,用x/w, y/w代替上面xy,有:

Ax + By + Cw = 0;

Ax + By + Dw = 0;

这两条直线在(x, y, w=0)处相交








转载于:https://www.cnblogs.com/Vulkan/p/7530024.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值