最近和同学讨论了一下关于延拓定理的一系列事情,个人认为这属于数学分析的盲点,为了补足这一缺憾,在这里作一点笔记。熟知如下定理
引理(Urysohn, 一般版本). 对于正规空间(=T2+T4)$X$, 令$A,B$是$X$的两个分离的闭集, 则他们可以被连续函数分离, 具体来说, 存在连续函数$f:X\to [0,1]$使得$$f(A)=0\qquad f(B)=1$$
证明. 取任意一个在$[0,1]$上稠密的可数集$\{a_i\}_{i=0}^\infty$(例如$\mathbb{Q}\cap [0,1]$), 不妨假设$a_0=0, a_1=1$. 下面拟构造一系列开集(除了$U_0$)$\{U_i\}_{i=0}^\infty$, 使得$$a_i<a_j\iff \overline{U_i}\subseteq U_j$$具体来说, 令$U_0=A, U_1=B^c$, 假设$i<n$已经构造好, 假设$a_i<a_n<a_j$. 此时根据条件, $\overline{U_i}\subseteq U_j$, 即$\overline{U_i}$与$U_j^c$不交, 故存在开集$U_n$使得$$\overline{U_i}\subseteq U_n\subseteq \overline{U_n}\subseteq U_j$$这样, 登高面已经决定好, 下面我们说明其决定了函数. 定义$$f: X\longrightarrow [0,1]\qquad x\longmapsto \inf\{a_i: x\in U_i\}$$下面说明其连续,
- $f(x)<r$当且仅当对$x\in \bigcup_{a_i<r} U_i$是开集.
- 因为$a_i$稠密, $U_i$嵌套的性质, $f(x)>s$当且仅当存在$s<a_i$满足$x\notin U_i$, 再利用稠密性知道这还当且仅当存在$s<a_j<a_i$使得$x\notin \overline{U_j}$, 这当且仅当$x\in \bigcup_{s<a_j} (\overline{U_j})^c$还是开集.
这说明$f$连续. 不难看出$f(A)=0, f(B)=1$. $\square$
相比之下,度量空间的Urysohn引理更加容易,且结论更强
引理(Urysohn, 度量空间). 对于度量空间$X$, 令$A,B$是$X$的两个分离的闭集, 则他们可以被连续函数分离, 具体来说, 存在连续函数$f:X\to [0,1]$使得$$f^{-1}(0)=A\qquad f^{-1}(1)=B$$
证明. 作$g(x)=\frac{d(x,A)}{d(x,A)+d(x,B)}$, 注意, 因为$A$是闭集, 故$d(x,A)=0\iff x\in A$, 故分母不为零, 该函数确实被定义, 再根据二者都非负不难得到$g(X)\subseteq [0,1]$. 不难得到此时$g(x)=1$当且仅当$x\in B$, $g(x)=0$当且仅当$x\in A$, 此时再调整一个线性函数即可. $\square$
作为类比,局部紧致下的Urysohn引理或许更为有用,这里局部紧已经暗含了Hausdorff性。
引理(Urysohn, 局部紧空间). 对于局部紧空间$X$, 令$A,B$是$X$的两个分离的闭集, 且其中之一紧致, 则他们可以被连续函数分离, 具体来说, 存在连续函数$f:X\to [0,1]$使得$$f(A)=0\qquad f(B)=1$$
证明. 不妨假设$A$是紧致的, $B^c$是$A$的邻域, 根据局部紧的假设, 存在开集$V$使得$A\subseteq V$且$\overline{V}$是紧致的. 由于对于Hausdorff紧致空间一定是正规的, 这样可以对$A$和$\partial V$用Urysohn引理, 有$f(A)=0, f(\partial V)=1$, 只需要延拓$f$使得在$V$外$f$取值为$1$就是满足条件的连续函数. $\square$
一个自然的问题是上面的连续能否改为可微?这需要$X$具有微分结构,这里不妨假设是欧式空间。如下的定理已经足够使用了,这个定理使用了磨光这一技巧。
引理(Urysohn, 光滑版本). 对于欧式空间$\mathbb{R}^n$的两个分离的闭集$A,B$, 如果其中之一是紧致的, 则他们可以被光滑函数分离, 具体来说, 存在光滑函数$f:X\to [0,1]$使得$$f(A)=0\qquad f(B)=1$$
证明. 考虑$f(x)=\begin{cases}0& x\leq 0\\ \mathrm{e}^{-1/x} & x>0\end{cases}$, 不难验证, $f$是光滑函数. 考虑$g(x)=\frac{f(x)}{f(x)+f(1-x)}$这也是光滑函数, 对于$a<b\leq c<d$, 记$h(x)=\begin{cases} g\left(\frac{x-a}{b-a}\right)& x\leq b \\ g\left(\frac{d-x}{d-c}\right)& b\leq x\leq d\end{cases}$, 这个函数光滑且在$(a,d)$以外为$0$, 在$[b,c]$上为$1$, 方便起见记$[b,c]\leq h(x)\leq (a,d)$. 任意$\epsilon$可以作$\{0\}\leq h(x)\leq (-\epsilon,\epsilon)$, 再通过调整$h$前的倍数可以使得存在光滑函数$\chi^{0}_{\epsilon}$满足$$\chi^0_{\epsilon}(x)>0\iff x\in (-\epsilon,\epsilon)\qquad \int \chi^0_{\epsilon}=1$$作$\chi_{\epsilon}(x^1,\ldots,x^n)=\chi^0_{\epsilon}(x^1)\ldots \chi^0_{\epsilon}(x^n)$, 则满足$$\chi_{\epsilon}(x)>0\iff x\in (-\epsilon,\epsilon)^n\qquad \int \chi_{\epsilon}=1$$
在这里我们选择距离$d(x,y)=\sum|x_i-y_i|$, 选择$\epsilon>0$使得任意$a\in A,b\in B$都有$3\epsilon<d(a,b)$. 记$A^{*}=\{x: d(x,A)\leq \epsilon\}, B^*=\{x: d(x,B)\leq \epsilon\}$. 记$i=1-1_{A^*}$, $1_{A^*}$是$A^*$的特征函数, 此时考虑$$d(x,A)=(d\mathsf{*}\chi_{\epsilon})(x)=\int_{\mathbb{R}}i(x-t)\chi_{\epsilon}(t)\mathrm{d} t=\int_{(-\epsilon,\epsilon)^n}i(x-t)\chi_{\epsilon}(t)\mathrm{d} t$$注意到
- $x\in A$意味着$x-t\in A^*$, 此时$d(x-t)=0$, 故$f(x)=0$.
- $x\in B$意味着$x-t\in B^*$, 此时$d(x-t)=1$, 故$f(x)=1$.
下面再验证$f(x)$光滑, $$\frac{f(x+\Delta x)-f(x)}{\Delta x}=\int \frac{i(x+\Delta x-t)-i(x-t)}{\Delta x} \chi_{\epsilon}(t)\textrm{d}t =\int \frac{\chi_{\epsilon}(x+\Delta x-t)-\chi_{\epsilon}(x-t)}{\Delta x} i(t)\textrm{d}t $$因为$\chi_{\epsilon}$光滑且只生活在一个紧致集上根据中值定理以及控制收敛定理, $\Delta x\to 0$和积分号可以交换顺序, 故$$\frac{\textrm{d}}{\textrm{d} x}f (x)=\int i(t)\frac{\textrm{d}}{\textrm{d} x}\chi_{\epsilon}(x-t)\textrm{d}t=\int i(x-t)\frac{\mathrm{d}}{\mathrm{d} t}\chi_{\epsilon}(t)\textrm{d}t$$上式是一维情况, 当中$\frac{\textrm{d}}{\textrm{d} x}$在高维可以换成任意偏微分算子, 换言之, 我们证明了$f(x)$是光滑的. $\square$
实际上这样得到的函数还可以对导数做一些估计。
记$\chi$为$\mathbb{R}^n$在$0$处取$1$, $(-1,1)^n$外取$0$且$||\chi||_{L^1}=1$的光滑函数, 对于重指标$\alpha$, 记一致范数$|| \partial^{\alpha} \chi ||=C_{\alpha}$. 则$\chi_{\epsilon}$可以取为$\frac{\chi(x/\epsilon)}{\epsilon^n}$, 故此时$|| \partial^{\alpha} \chi_{\epsilon}||=\frac{C_{\alpha}}{\epsilon^{|\alpha|+n}}$. 对于可测集合$X$, 考虑$$f(x)=\int (1-1_X)(x-t)\chi_{\epsilon}(t)\textrm{d} t=\int_{(-\epsilon,\epsilon)^n} (1-1_X)(x-t)\chi_{\epsilon}$$则$$||\partial^{\alpha} f||\leq (2\epsilon)^n ||\partial^{\alpha}\chi_{\epsilon}||\leq \frac{2^n C_{\alpha}}{\epsilon^{|\alpha|}}$$
这样, 对于紧致集$A$, 闭集$B$, Urysohn引理所作的光滑函数$f$将满足$||\partial^{\alpha}f||\leq \frac{2^n 3^{|\alpha|} C_{\alpha}}{d(A,B)^{|\alpha|}}$. 即对每个$\alpha$, 存在常数$M_{\alpha}$使得$$||\partial^{\alpha}f||\leq \frac{M_{\alpha}}{d(A,B)^{|\alpha|}}$$
不过还有如下方法可以将定理做得更强。
引理(Urysohn, 光滑版本). 对于欧式空间$\mathbb{R}^n$的两个分离的闭集$A,B$, 则他们可以被光滑函数分离, 具体来说, 存在光滑函数$f:X\to [0,1]$使得$$f^{-1}(0)=A\qquad f^{-1}(1)=B$$
证明. 采取的方法是对每个闭集$A$找类似距离函数的光滑函数$\partial(x,A)\geq 0$使得$0$的原像就是$A$, 然后为了达成要求只需要$f(x)=\frac{\partial(x,A)}{\partial(x,A)+\partial(x,B)}$. 可以断言, 任何一个闭集$A$都是可数个正方形$\{x_i+(-\epsilon_i,\epsilon_i)^n\}$的并, 不妨假设$\epsilon\leq 1$. 上面可以得到$\chi$在$0$处取$1$, $(-1,1)^n$外取$0$, 取$C_n\geq 1$使得$$\max_{|\alpha|\leq n} || \partial^{\alpha} \chi ||\leq C_n$$作$$\partial(x,A)=\sum_{i=1}^\infty \frac{\epsilon_i^i}{2^i C_i}\chi\left(\frac{x-x_i}{\epsilon_i}\right)$$此时$$|\partial^{\alpha}\partial(x)| \leq \sum_{i=1}^\infty \frac{\epsilon_i^{i-|\alpha|}}{2^i C_i}(\partial^{\alpha}\chi)\left|\left(\frac{x-x_i}{\epsilon_i}\right)\right|\leq \sum_{i=1}^{|\alpha|}(\ldots)+\sum_{i=|\alpha|+1}^\infty \frac{1}{2^i}$$故各阶导数均一致收敛, 故$\partial(x,A)$无限次可微. 而显然$\partial(x,A)=0\iff x\in A$. $\square$
下面是著名的Tietz扩张定理。
定理(Tietz扩张). 如果$X$是正规空间或度量空间, $A$是其中一个闭集(或$X$是局部紧空间, $A$是紧致时), 则任何$A$上的连续函数都可以延拓到整个$X$上.
证明. 设连续函数$f:A\to \mathbb{R}$, 首先, 可以不妨假设$f$是有界的, 否则可以$\arctan$伺候. 不妨假设$f(A)\subseteq [0,1]$. 因为$A$是闭集(紧致集), 故$[0,1]$的闭集的原像是$X$的闭集(紧致集).
- 根据Urysohn引理考虑取连续函数$g_1:X\to [0,1/3]$分离$B_1=f^{-1}[2/3,1]$和$C_1=f^{-1}[0,1/3]$, 使得$g_1(B_1)=1/3,g_1(C_1)=0$.
- 再考虑$f_2=f-g_1|_A$, 此时$f_2(A)\subseteq [0,2/3]$, 然后再取取连续函数$g_2:X\to [0,(1/3)(2/3)]$分离$B_2=f_2^{-1}[(2/3)^2,2/3], C_2=f_2^{-1}[0,(1/3)(2/3)]$, 使得$g_2(B_2)=(1/3)(2/3), g_2(C_2)=0$.
- 再考虑$f_3=f_2-g_2|_A$, 此时$f_3(A)\subseteq [0,(2/3)^2]$.
以此类推可以得到$\{g_n\}_{n=1}^{\infty}\}$使得$||g_n||\leq (1/3)(2/3)^{n-1}$, $||f-\sum_{i=1}^n g_i||_A\leq (2/3)^n$, 换言之$g=\sum_{i=1}^\infty g_i$一致收敛(从而连续), 且在$A$上$f=g$. 这就完成了证明. $\square$
下面可以来推导著名的单位分拆定理。
定义(单位分拆). 对于拓扑空间$X$, 对于连续函数$f: X\to \mathbb{R}$, 记支集$\operatorname{supp} f=\overline{\{x\in X:f(x)\neq 0\}}$. 对于开覆盖$\{U_{\alpha}\}$, 称一族函数$\{\varphi_i\}$是$\{U_{\alpha}\}$的单位分拆如果
- 对任意$i$, 存在$\alpha$使得$\operatorname{supp} \varphi_i\subseteq U_{\alpha}$.
- 对每个$x\in X$, 存在邻域$U$使得$\{i: U\cap\operatorname{supp}\varphi_i\neq \varnothing\}$是有限集.($\operatorname{supp}\varphi_i$局部有限)
- 对任意$x\in X$都有$\sum_{i} \varphi_i(x)=1$, 以及$\varphi_i(x)\geq 0$.
如果$\varphi_i$都是光滑的, 就称之为光滑单位分拆.
当然,最为基本的就是紧致的情况。
定理(单位分拆存在定理, 紧致版本). 对于Hausdorff紧致空间$X$, 任意开覆盖总存在单位分拆.
证明. 任意取开覆盖, 对于每一点$x$, 假设开覆盖中$x\in U_x$, 存在开集$W_x,V_x$使得$$x\in W_x\subseteq \overline{W_x}\subseteq V_x\subseteq \overline{V_x}\subseteq U_x$$此时$\{W_x\}$还是开覆盖, 故存在有限覆盖$\{W_{x_i}\}$. 此时根据Urysohn引理作$\psi_i:X\to [0,1]$满足$\varphi_i(\overline{W_{x_i}})=1$且$\varphi_i(V_{x_i}^c)=0$, 作$\psi=\sum \varphi_i$, 因为$\{W_{x_i}\}$是开覆盖, 故$\psi\geq 1$, 故$\varphi_i=\frac{\psi_i}{\psi}\geq 0$的支集$\subseteq \overline{V_x}\subseteq U_x$, 且满足$\sum \varphi_i=1$, 故满足条件. $\square$
我们自然也不会放过光滑的版本。
定理(单位分拆存在定理, 光滑版本). 对于流形$M$(假定C2), 任意开覆盖总存在光滑单位分拆.
证明. 我们总可以找到可数的开集$\{U_i\}$和紧致集$F_i$使得$$U_1\subseteq F_1\subseteq U_2\subseteq F_2\subseteq \ldots \qquad \bigcup_{i=1}^\infty U_i=M$$只需要取可数拓扑基$\{B_i\}$, 定义$U_1=B_1$, $F_1=\overline{U_1}$, 找充分大的$n$使得$U_2=\bigcup_{i=1}^n U_i\supseteq F_1$以此类推. 这样$\{U_{i+1}\setminus F_{i-1}\}$就是一个局部有限的可数开覆盖. 假设$x\in U_i\setminus U_{i-1}$, 那么上面的证明中的$V_x,W_x$不妨取在$U_i\setminus F_{i-1}$之中. 他们形成$F_i\setminus U_{i-2}$的开覆盖, 根据Lindelöf覆盖定理他们存在可数子覆盖, 不难验证选出的可数子覆盖满足“局部有限”的条件, 之后的证明都如愿以偿. $\square$
下面我们来介绍“光滑”版本的延拓定理。
定理(子流形延拓定理). 对于流形$M$, 子流形$N\subseteq M$上的光滑函数可以延拓到$M$上.
证明. 假设光滑函数是$f$. 在某一点附近$U$可以选择坐标卡使得$N$的坐标恰好是$M$坐标前几位(因为子流形要求非退化, $N$的坐标切映射可以延拓成一组基), 这样局部就得以延拓, 假设延拓为$f_U$. 将这些局部收集起来得到$U_i$. 作单位分拆$\{\varphi_j\}$, 则在$\operatorname{supp}\varphi_j\subseteq U_i$对某个$i$, 作$g_i=\varphi_if_U$, 这是一个定义在整个$M$上的光滑函数, 再做$g=\sum g_i$, 这就为所求的光滑函数. $\square$
至此,可以我们可以说扩张定理的根基是Urysohn引理,Urysohn引理是扩张定理的特殊情况,粗略来说Urysohn引理得到的函数就是连续(光滑)函数大背景下是对特征函数的替代,通过特征函数组成简单函数(即他们的和)来逼近函数是一种约化的简单方法,问题简单化之后变得能够解决,同样的思想还被用于证明Riesz表示定理。Urysohn引理的进一步“用法”就是用于局部紧空间,给一个邻域“搭台唱戏”,这样导出的单位分拆得将局部的函数“连成一片”,尽管他们在相交处可能是不同的,这足以看到单位分拆是微分流形上关于函数(更广泛来说是场)的“局部-整体”原理,而如解析函数一类则无此性质,这表明解析函数的刚性,这从侧面反映出光滑函数虽然比连续函数要求稍高一些,但本质上还是足够“柔软”的。