复变函数论(八)-解析延拓3-完全解析函数及黎曼面的概念3:黎曼面的概念

w = F ( z ) w=F(z) w=F(z) 是多值解析函数, 即具有支点的完全解析函数, 则对其存在区域中 z z z的一个值, w w w 有多个值和它对应. 黎曼采取一种方法, 使 w w w 的值和 z z z的值成一一对应.他创造一种模型 (称为黎曼面) 代替通常的 z z z 平面.利用黎曼面, 可以使以前所说的解析延拓的过程,多值解析函数概念本身、分支、支点及支割线的概念,在几何上有了明显的表示和说明.更重要的是, 可以使多值完全解析函数 F ( z ) F(z) F(z)成为其黎曼面上的单值解析函数 (这时, F ( z ) F(z) F(z)的存在区域就是一个推广了的区域. 即黎曼面).于是,单值解析函数的理论便可以对它应用了. 因此, 由于函数多值性所引起的复杂性,利用几何方法可以消除掉.

下面我们举几个简单的例子来讨论黎曼面.一般对于多值解析函数,要用若干叶片来适当地"粘合"成一个黎曼面的工作是相当复杂的,并且需要相当的技巧.

例 8.11
函数 w = z 1 2 w=z^{\frac{1}{2}} w=z21 的黎曼面.


由于对 z z z 平面上每一个异于零的点, 此函数有两个值和它相对应;如对不同函数值的相同的点 z z z 能加以区别, 就能满足我们的要求.

z = r e θ z=r \mathrm{e}^{\theta} z=reθ, 于是相同的点 z z z 可由不同的 θ \theta θ来决定, 从而不同的函数值可用不同的 θ \theta θ来规定. 因当 z z z 绕原点一周, w w w 的值由 z \sqrt{z} z 变为 − z -\sqrt{z} z ; 当 z z z 再绕原点一周, − z -\sqrt{z} z 又变为 z \sqrt{z} z . 所以如 z \sqrt{z} z 相当于 0 < θ < 2 π 0<\theta<2 \pi 0<θ<2π, 则 − z -\sqrt{z} z 相当于 2 π < θ < 4 π 2 \pi<\theta<4 \pi 2π<θ<4π. 现在设想两个 z z z 平面相重叠,原点的位置与实轴的方向都相同. 在上的平面用 M 0 M_{0} M0 表示, 相当于 0 < θ < 2 π 0<\theta<2 \pi 0<θ<2π; 在下的平面用 M 1 M_{1} M1 表示, 相当于 2 π < θ < 4 π 2 \pi<\theta<4 \pi 2π<θ<4π. 由于 z = 0 z=0 z=0 z = ∞ z=\infty z= w = z 1 2 w=z^{\frac{1}{2}} w=z21
的两个支点, 我们现在可以选正实轴为支割线, 将两个平面各沿正实轴割开, 使 z z z 分别在 M 0 M_{0} M0 M 1 M_{1} M1上不能越过支割线在同一平面上变动.再沿支制线使 M 0 M_{0} M0 的下岸 ( θ = 2 π ) (\theta=2 \pi) (θ=2π) M 1 M_{1} M1 的上萍 ( θ = 2 π ) (\theta=2 \pi) (θ=2π)粘合, 并使 M 1 M_{1} M1的下岸 ( θ = 4 π ) (\theta=4 \pi) (θ

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值