复变函数论(八)-解析延拓2-透弧解析延拓、对称原理1:透弧直接解析延拓

本文介绍了潘勒韦(Painlevé)连续延拓原理在复变函数论中的应用,特别是在透弧解析延拓的概念中。通过该原理,当两个解析函数元素的公共边界满足一定条件时,可以将解析函数在边界上的值一致的区域进行连续延拓,形成新的解析函数元素。同时,定义了互为透弧直接解析延拓的概念,为复变函数的解析延拓提供了一种几何方法——对称原理。
摘要由CSDN通过智能技术生成

在前节中提到的直接解析延拓概念是关于相交区域的.如果两个区域不相交,但有一段公共边界 (这是两个区域"紧接"的又一个含义),我们可以在下列连续延拓原理的基础上, 建立透弧直接解析延拓的概念,并指出解析延拓的一个几何方法一对称原理.


定理 8.2 (潘勒韦 (Painlevé) 连续延拓原理)

{ D 1 , f 1 ( z ) } \left\{D_{1}, f_{1}(z)\right\} { D1,f1(z)} { D 2 , f 2 ( z ) } \left\{D_{2}, f_{2}(z)\right\} { D2,f2(z)}为两个解析函数元素, 满足:

(1) 区域 D 1 D_{1} D1 D 2 D_{2} D2 不相交,但有一段公共边界,除掉其端点后的开弧记为 Γ \Gamma Γ.
(2) f 1 ( z ) f_{1}(z) f1(z) D 1 + Γ D_{1}+\Gamma D1+Γ 上连续, f 2 ( z ) f_{2}(z) f2(z) D 2 + Γ D_{2}+\Gamma D2+Γ上连续.
(3) 沿 Γ , f 1 ( z ) = f 2 ( z ) \Gamma, f_{1}(z)=f_{2}(z) Γ,f1

  • 22
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值