Machine Learning --- Linear regression & Rige & Robust regression & Lasso

一、Least squares最小二乘回归(高斯似然+均匀先验)

因为先验是均匀分布,因此求最小二乘回归即求高斯最大似然。

image

image

在泛化的线性模型里,x为多项式基:

image

image

高斯似然函数为:

image

让似然函数最大,即令残差平方和RSS最小,RSS/N即为均方误差MSE。-log似然(NLL)对w求偏导等于0,得:

image

 image

*注:最小二乘回归计算方法

1.数值计算(有解析解,精确,但速度慢)

a. QR分解:稳定

image

image

b. SVD奇异值分解(广义的特征值分解)

image

SVD分解,得右奇异向量:

image

奇异值:

image

左奇异向量:

image

最小二乘计算结果:

image

2.梯度下降法(有数值解,速度快。利用所有样本,也称批处理梯度下降)

image

image

image

3.随机梯度下降法(SGD,每次只用一个样本,速度更快,用于在线学习)

image

 

二、Rige岭回归(高斯似然+高斯先验(L2正则))

先验:

image

似然:

image

后验:

image

后验函数对w求偏导等于0得:

image,其中:image

*注:岭回归计算方法

1.解析解

a. QR分解

image,其中image

image

b. SVD分解

image

SVD与主成分的关系:特征值越大,方差越大。

image

image

 

三、Robust regression鲁棒线性回归(Laplace/Student似然+均匀先验)

因为先验服从均匀分布,所以求鲁棒线性回归即求Laplace/Student最大似然。在heavy tail(奇异点较多)情况下用鲁棒线性回归,因为Laplace/Student分布比高斯分布更鲁棒。

image

image

似然函数为:

image

由于零点不可微,所以求解析解困难,无法使用梯度下降法。引入Huber损失函数解决此问题:

image

 

四、Lasso回归(Least absolute shrinkage and selection operator,高斯似然+Laplace先验)

Laplace先验除了加罚项外,还有特征选择的作用。因为加高斯先验,w绝大多数不为0;而Laplace先验使w大多数为0,降低了模型复杂度的同时选择了特征,如下图:

image

Lasso目标:最小化损失函数

image

零点不可微:引入子梯度。如f(x)=|x|,其子梯度为:

image

可微项梯度:

imageimageimage

目标函数子梯度为:

image

image

根据Cj的不同,可分为下面三种情况

image

综上,对于给定的lamda,最佳权重为:

imageimage

软阈值:设置小权重为0同时缩小其他所有权重。

image

硬阈值:设置小权重为0但不缩放其他权重。

image

 

*总结:

如果输入正交:即X'X=I,则RSS为:

image

最小二乘回归的解为:

image

岭回归的解为:

image

Lasso的解为:

image

 

转载于:https://www.cnblogs.com/jizhiyuan/p/3420602.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值