MIM攻击原论文地址——https://arxiv.org/pdf/1710.06081.pdf
1.MIM攻击的原理
MIM攻击全称是 Momentum Iterative Method,其实这也是一种类似于PGD的基于梯度的迭代攻击算法。它的本质就是,在进行迭代的时候,每一轮的扰动不仅与当前的梯度方向有关,还与之前算出来的梯度方向相关。其中的衰减因子就是用来调节相关度的,decay_factor在(0,1)之间,decay_factor越小,迭代轮数靠前算出来的梯度对当前的梯度方向影响越小。由于之前的梯度对后面的迭代也有影响,迭代的方向不会跑偏,总体的大方向是对的。
为了加速梯度下降,通过累积损失函数的梯度方向上的矢量,从而(1)稳定更新(2)有助于通过 narrow valleys, small humps and poor local minima or maxima.(大致意思就是,可以有效避免局部最优)
是decay_factor, 另外,在原论文中,每一次迭代对x的导数是直接算的1-范数,然后求平均,但在各个算法库以及论文实现的补充中,并没有求平均,估计这个对结果影响不太大。
2.代码实现
class MomentumIterativeAttack(Attack, LabelMixin):
"""
The L-inf projected gradient descent attack (Dong et al. 2017).
The attack performs nb_iter steps of size eps_iter, while always staying
within eps from the initial point. The optimization is performed with
momentum.
Paper: https://arxiv.org/pdf/1710.06081.pdf
"""
def __init__(
self, predict, loss_fn=None, eps=0.3, nb_iter=40, decay_factor=1.,
eps_iter=0.01, clip_min=0., clip_max=1., targeted=False):
"""
Create an instance of the MomentumIterativeAttack.
:param predict: forward pass function.
:param loss_fn: loss function.
:param eps: maximum distortion.
:param nb_iter: number of iterations
:param decay_factor: momentum decay factor.
:param eps_iter: attack step size.
:param clip_min: mininum value per input dimension.
:param clip_max: maximum value per input dimension.
:param targeted: if the attack is targeted.
"""
super(MomentumIterativeAttack, self).__init__(
predict, loss_fn, clip_min, clip_max)
self.eps = eps
self.nb_iter = nb_iter
self.decay_factor = decay_factor
self.eps_iter = eps_iter
self.targeted = targeted
if self.loss_fn is None:
self.loss_fn = nn.CrossEntropyLoss(reduction="sum")
def perturb(self, x, y=None):
"""
Given examples (x, y), returns their adversarial counterparts with
an attack length of eps.
:param x: input tensor.
:param y: label tensor.
- if None and self.targeted=False, compute y as predicted
labels.
- if self.targeted=True, then y must be the targeted labels.
:return: tensor containing perturbed inputs.
"""
x, y = self._verify_and_process_inputs(x, y)
delta = torch.zeros_like(x)
g = torch.zeros_like(x)
delta = nn.Parameter(delta)
for i in range(self.nb_iter):
if delta.grad is not None:
delta.grad.detach_()
delta.grad.zero_()
imgadv = x + delta
outputs = self.predict(imgadv)
loss = self.loss_fn(outputs, y)
if self.targeted:
loss = -loss
loss.backward()
g = self.decay_factor * g + normalize_by_pnorm(
delta.grad.data, p=1)
# according to the paper it should be .sum(), but in their
# implementations (both cleverhans and the link from the paper)
# it is .mean(), but actually it shouldn't matter
delta.data += self.eps_iter * torch.sign(g)
# delta.data += self.eps / self.nb_iter * torch.sign(g)
delta.data = clamp(
delta.data, min=-self.eps, max=self.eps)
delta.data = clamp(
x + delta.data, min=self.clip_min, max=self.clip_max) - x
rval = x + delta.data
return rval
有人认为,advertorch中在迭代过程中,应该是对imgadv求导,而不是对delta求导,foolbox和cleverhans的实现都是对每一轮的对抗样本求导。