一致连续的直白意义是: 若函数 fff 一致连续,对于任意两点 xxx 与 yyy,只要 xxx 与 yyy 充分接近,f(x)f(x)f(x) 与 f(y)f(y)f(y) 也能够充分接近。
邻域定义:
对于任意实数 ϵ>0\epsilon>0ϵ>0,总存在实数 δ>0\delta>0δ>0,只要 ∥x−y∥<δ\|x-y\|<\delta∥x−y∥<δ,都有 ∥f(x)−f(y)∥<ϵ\|f(x)-f(y)\|<\epsilon∥f(x)−f(y)∥<ϵ.
海涅-康托尔定理表面:若一个函数在闭区间连续,则该函数也是一致连续的。