一致连续
连续与一致连续
尽管我们可以说函数
f
(
x
)
f(x)
f(x)在区间
X
X
X上连续,但实际上连续的作用目标是“区间上的每一个点”,即
∀
x
0
∈
X
,
∀
ε
>
0
,
∃
δ
(
ε
,
x
0
)
>
0
,
s
.
t
.
∀
x
∈
U
(
x
0
;
δ
)
∩
X
,
∣
f
(
x
)
−
f
(
x
0
)
∣
<
ε
.
\forall x_0\in X,\forall \varepsilon>0,\exist \delta(\varepsilon,x_0)>0,{\rm s.t.}\forall x\in U(x_0;\delta)\cap X,|f(x)-f(x_0)|<\varepsilon.
∀x0∈X,∀ε>0,∃δ(ε,x0)>0,s.t.∀x∈U(x0;δ)∩X,∣f(x)−f(x0)∣<ε.
注意到这里
δ
\delta
δ的选取不止依赖于
ε
\varepsilon
ε,还依赖于作用的点
x
0
x_0
x0,因此,函数连续依然被视作是点性质,与函数极限类似。
一致连续是一个定义在区间上的概念,不同于连续。也就是说,如果在根据
ε
\varepsilon
ε寻找
δ
\delta
δ时只考虑
ε
\varepsilon
ε的大小,而不考虑选取的具体点
x
0
x_0
x0,即找到一个对任何
x
0
x_0
x0都适用的
δ
(
ε
)
\delta(\varepsilon)
δ(ε),就称
f
(
x
)
f(x)
f(x)在区间
X
X
X上具有一致连续性,即
∀
ε
>
0
,
∃
δ
(
ε
)
>
0
,
∀
x
0
∈
X
,
s
.
t
.
∀
x
∈
U
(
x
0
;
δ
)
∩
X
,
∣
f
(
x
)
−
f
(
x
0
)
∣
<
ε
.
\forall \varepsilon>0,\exist \delta(\varepsilon)>0,\forall x_0\in X,{\rm s.t.}\forall x\in U(x_0;\delta)\cap X,|f(x)-f(x_0)|<\varepsilon.
∀ε>0,∃δ(ε)>0,∀x0∈X,s.t.∀x∈U(x0;δ)∩X,∣f(x)−f(x0)∣<ε.
其等价的定义是:设函数
f
(
x
)
f(x)
f(x)定义在区间
X
X
X上,若对于任意给定的
ε
>
0
\varepsilon>0
ε>0,存在
δ
>
0
\delta>0
δ>0,只要
x
′
,
x
′
′
∈
X
x',x''\in X
x′,x′′∈X满足
∣
x
′
−
x
′
′
∣
<
δ
|x'-x''|<\delta
∣x′−x′′∣<δ,就成立
∣
f
(
x
′
)
−
f
(
x
′
′
)
∣
<
ε
|f(x')-f(x'')|<\varepsilon
∣f(x′)−f(x′′)∣<ε,就称
f
(
x
)
f(x)
f(x)在区间
X
X
X上一致连续。
可以看出:
f
(
x
)
f(x)
f(x)在
X
X
X上一致连续
⇒
f
(
x
)
\Rightarrow f(x)
⇒f(x)在
X
X
X上连续,但反之不一定成立。这是因为
∀
x
0
∈
X
\forall x_0\in X
∀x0∈X,可以取
δ
(
x
0
,
ε
)
=
δ
(
ε
)
\delta(x_0,\varepsilon)=\delta(\varepsilon)
δ(x0,ε)=δ(ε),就得到
f
(
x
)
f(x)
f(x)在点
x
0
x_0
x0的连续性,进而得到
f
(
x
)
f(x)
f(x)在区间
X
X
X上的连续性。而反之,可以找出一些在开区间上的例子,说明
f
(
x
)
f(x)
f(x)在开区间上连续但不一致连续,如
f
(
x
)
=
1
x
,
x
∈
(
0
,
1
]
.
f(x)=\frac 1x,\quad x\in (0,1].
f(x)=x1,x∈(0,1].
要使得
∣
f
(
x
)
−
f
(
x
0
)
∣
<
ε
|f(x)-f(x_0)|<\varepsilon
∣f(x)−f(x0)∣<ε,就有
∣
1
x
−
1
x
0
∣
<
ε
,
1
x
0
−
ε
<
1
x
<
1
x
0
+
ε
⇓
x
0
1
+
ε
x
0
<
x
<
x
0
1
−
ε
x
0
⇓
−
x
0
2
1
+
x
0
ε
<
x
−
x
0
<
x
0
2
ε
1
−
x
0
ε
.
\left|\frac 1x-\frac1{x_0}\right|<\varepsilon,\quad \frac 1{x_0}-\varepsilon<\frac 1x<\frac 1{x_0}+\varepsilon\\ \Downarrow\\ \frac{x_0}{1+\varepsilon x_0}<x<\frac{x_0}{1-\varepsilon x_0}\\ \Downarrow\\ \frac{-x_0^2}{1+x_0\varepsilon}<x-x_0<\frac{x_0^2\varepsilon}{1-x_0\varepsilon}.
∣∣∣∣x1−x01∣∣∣∣<ε,x01−ε<x1<x01+ε⇓1+εx0x0<x<1−εx0x0⇓1+x0ε−x02<x−x0<1−x0εx02ε.
得到
δ
(
x
0
,
ε
)
=
x
0
2
ε
1
+
x
0
ε
\delta(x_0,\varepsilon)=\frac{x_0^2\varepsilon}{1+x_0\varepsilon}
δ(x0,ε)=1+x0εx02ε,这是
δ
\delta
δ的精确解,可以看出,
x
0
→
0
x_0\to 0
x0→0时
δ
(
x
0
,
ε
)
→
0
\delta(x_0,\varepsilon)\to0
δ(x0,ε)→0,所以不存在一个对所有
x
0
x_0
x0都适用的
δ
(
ε
)
\delta(\varepsilon)
δ(ε),故
f
(
x
)
f(x)
f(x)在
(
0
,
1
]
(0,1]
(0,1]上不是一致连续的。
但对于闭区间,有Cantor定理保证, f ( x ) f(x) f(x)在 X X X上连续 ⇔ f ( x ) \Leftrightarrow f(x) ⇔f(x)在 X X X上一致连续。
而对于有限开区间 ( a , b ) (a,b) (a,b),只要 f ( a + ) , f ( b − ) f(a^+),f(b^-) f(a+),f(b−)存在且有限,那么就可以将其延拓成闭区间,因此一样能由连续性推出一致连续性。
一致连续的判定
刚才我们得出了一种计算 δ ( x 0 , ε ) \delta(x_0,\varepsilon) δ(x0,ε)的精确解,来判断是否一致连续的方法,但精确解的计算是比较困难的,在绝大多数时候会对 δ \delta δ进行放缩。有一种更简便的方法来判断非一致连续性。
命题:设 f ( x ) f(x) f(x)在区间 X X X上定义,则 f ( x ) f(x) f(x)在 X X X上一致连续的充要条件是,对任何 X X X上的点列 { x 0 ′ } , { x 0 ′ ′ } \{x_0'\},\{x_0''\} {x0′},{x0′′},只要满足 lim n → ∞ ( x n ′ − x n ′ ′ ) = 0 \lim\limits_{n\to \infty}(x_n'-x_n'')=0 n→∞lim(xn′−xn′′)=0,就成立 lim n → ∞ [ f ( x ′ ) − f ( x ′ ′ ) ] = 0 \lim\limits_{n\to \infty}[f(x')-f(x'')]=0 n→∞lim[f(x′)−f(x′′)]=0。
证明:先证明必要性。
f ( x ) f(x) f(x)在区间 X X X上一致连续,即 ∀ ε > 0 , ∃ δ ( ε ) > 0 \forall \varepsilon>0,\exists \delta(\varepsilon)>0 ∀ε>0,∃δ(ε)>0,只要 ∣ x ′ − x ′ ′ ∣ < δ |x'-x''|<\delta ∣x′−x′′∣<δ,就有 ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε |f(x')-f(x'')|<\varepsilon ∣f(x′)−f(x′′)∣<ε。现既然 lim n → ∞ ( x n ′ − x n ′ ′ ) = 0 \lim\limits_{n\to \infty}(x_n'-x_n'')=0 n→∞lim(xn′−xn′′)=0,则对于任何 δ ( ε ) > 0 \delta(\varepsilon)>0 δ(ε)>0,必定存在一个 N ( ε ) N(\varepsilon) N(ε)当 n > N n>N n>N时, ∣ x n ′ − x n ′ ′ ∣ < δ ( ε ) |x'_n-x_n''|<\delta(\varepsilon) ∣xn′−xn′′∣<δ(ε),于是 ∣ f ( x n ′ ) − f ( x n ′ ′ ) ∣ < ε |f(x_n')-f(x_n'')|<\varepsilon ∣f(xn′)−f(xn′′)∣<ε。
再证明充分性,采用反证法。
如果对于不一致连续的函数
f
(
x
)
f(x)
f(x),一定存在
X
X
X上的点列
{
x
n
′
}
,
{
x
n
′
′
}
\{x_n'\},\{x_n''\}
{xn′},{xn′′},虽然
x
n
′
−
x
n
′
′
→
0
x_n'-x_n''\to 0
xn′−xn′′→0,但是
f
(
x
n
′
)
−
f
(
x
n
′
′
)
↛
0
f(x_n')-f(x_n'')\nrightarrow 0
f(xn′)−f(xn′′)↛0,就可以证明原命题的成立。因此,我们考虑一个不一致连续的函数
f
(
x
)
f(x)
f(x),按照不一致连续的定义,有
∃
ε
0
>
0
,
∀
δ
>
0
,
∃
x
′
,
x
′
′
∈
X
,
∣
x
′
−
x
′
′
∣
<
δ
,
∣
f
(
x
′
)
−
f
(
x
′
′
)
∣
>
ε
0
.
\exists \varepsilon_0>0,\forall \delta>0,\exist x',x''\in X,|x'-x''|<\delta,|f(x')-f(x'')|>\varepsilon_0.
∃ε0>0,∀δ>0,∃x′,x′′∈X,∣x′−x′′∣<δ,∣f(x′)−f(x′′)∣>ε0.
取一列
{
δ
n
}
→
0
\{\delta_n\}\to 0
{δn}→0,不妨取
δ
n
=
1
n
\delta_n=\dfrac 1n
δn=n1,则有
∣
x
n
′
−
x
n
′
′
∣
<
δ
n
→
0
,
∣
f
(
x
n
′
)
−
f
(
x
n
′
′
)
∣
>
ε
0
.
|x_n'-x_n''|<\delta_n\to 0,\quad |f(x_n')-f(x_n'')|>\varepsilon_0.
∣xn′−xn′′∣<δn→0,∣f(xn′)−f(xn′′)∣>ε0.
这就得到了点列满足条件,因此不一致连续的函数一定存在距离无限接近但函数值不接近的点列,也就是只要所有无限接近的点列函数值都无限接近,那么一定是一致连续。
一致连续与开区间
刚才我们说过,对于有限开区间 ( a , b ) (a,b) (a,b),只要其端点处存在单侧极限,就能从连续推出一致连续。然而,这个命题反过来也是成立的,即对于开区间 ( a , b ) (a,b) (a,b)上的一致连续函数 f ( x ) f(x) f(x),可以推出 f ( a + ) , f ( b − ) f(a^+),f(b^-) f(a+),f(b−)存在且有限。
因为
f
(
x
)
f(x)
f(x)在开区间
(
a
,
b
)
(a,b)
(a,b)上一致连续,所以
∀
ε
>
0
,
∃
δ
\forall \varepsilon>0,\exist \delta
∀ε>0,∃δ,当
∣
x
′
−
x
′
′
∣
<
δ
|x'-x''|<\delta
∣x′−x′′∣<δ时
∣
f
(
x
′
)
−
f
(
x
′
′
)
∣
<
ε
|f(x')-f(x'')|<\varepsilon
∣f(x′)−f(x′′)∣<ε。在区间
(
a
,
b
)
(a,b)
(a,b)上任意选取数列
x
n
∈
(
a
,
b
)
x_n\in (a,b)
xn∈(a,b)且
lim
n
→
∞
x
n
=
a
\lim\limits_{n\to \infty}x_n=a
n→∞limxn=a,这里
{
x
n
}
\{x_n\}
{xn}是基本列,所以对于上述
δ
\delta
δ,
∃
N
,
∀
n
,
m
>
N
:
∣
x
n
−
x
m
∣
<
δ
⇒
∣
f
(
x
n
)
−
f
(
x
m
)
∣
<
ε
.
\exist N,\forall n,m>N:|x_n-x_m|<\delta \Rightarrow |f(x_n)-f(x_m)|<\varepsilon.
∃N,∀n,m>N:∣xn−xm∣<δ⇒∣f(xn)−f(xm)∣<ε.
这就说明
f
(
x
n
)
f(x_n)
f(xn)也是基本数列,存在极限。由Heine定理,
lim
x
→
a
+
f
(
x
)
\lim\limits_{x\to a^+}f(x)
x→a+limf(x)存在且有限,记作
f
(
a
+
)
f(a^+)
f(a+)即可 。同理可以证明
lim
x
→
b
−
f
(
x
)
\lim\limits_{x\to b^-}f(x)
x→b−limf(x)存在且有限,记作
f
(
b
−
)
f(b^-)
f(b−)。
但对于无限开区间,不能得到这个结果,因为Cauchy收敛准则的收敛是指对有限数的收敛,对无穷的收敛是不适用的,如取 { x n } , x n = − n \{x_n\},x_n=-n {xn},xn=−n,就不存在这样的 N N N使得 ∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon ∣xn−xm∣<ε。
可以取一个在无穷区间上一致连续,但不存在无穷极限的,如 f ( x ) = sin x f(x)=\sin x f(x)=sinx在 R \R R上一致连续,但不存在极限。但如果单侧无限区间 [ a , + ∞ ) [a,+\infty) [a,+∞)或 ( − ∞ , b ] (-\infty,b] (−∞,b]上存在极限 A = lim x → + ∞ f ( x ) A=\lim\limits_{x\to +\infty}f(x) A=x→+∞limf(x)或 B = lim x → − ∞ f ( x ) B=\lim\limits_{x\to -\infty}f(x) B=x→−∞limf(x),那么 f ( x ) f(x) f(x)在这样的无限区间上是一致连续的。