【数学分析】一致连续的一些证明方法

  • 一致连续是函数的一个重要性质。与注重于函数在“一点”情况的连续性刻画不同,一致连续是对函数在一个区间性质的刻画。

  • 一致连续的定义如下:

    设 f ( x ) 在区间 X 上有定义。如果 ∀ ϵ > 0 , ∃ δ > 0 , s . t . ∀ x 1 , x 2 ∈ X , 只要 ∣ x 1 − x 2 ∣ < δ , 都有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ , 就称 f ( x ) 在 X 上一致连续。 设f(x)在区间X上有定义。如果\forall \epsilon>0,\exist \delta>0,s.t.\\\forall x_1,x_2\in X,\\只要|x_1-x_2|<\delta,都有\\|f(x_1)-f(x_2)|<\epsilon,\\就称f(x)在X上一致连续。 f(x)在区间X上有定义。如果ϵ>0,δ>0,s.t.x1,x2X,只要x1x2<δ,都有f(x1)f(x2)<ϵ,就称f(x)X上一致连续。.

    • 注意:如果函数在大区间上一致连续,则函数在小区间上也一致连续
  • 一致连续还有一个由振幅刻画的充要条件:

    设 f ( x ) 在区间 X 上有定义,则 f ( x ) 在 X 上一致连续    ⟺    ∀ ϵ > 0 , ∃ δ > 0 , s . t . 对任意闭子区间 I ⊂ X , 只要 l ( I ) < δ , 都有 ω f ( I ) < ϵ , l ( I ) 表示区间长度 设f(x)在区间X上有定义,则f(x)在X上一致连续\iff \\\forall \epsilon>0,\exist \delta >0,s.t.\\对任意闭子区间I\sub X,只要l(I)<\delta,都有\\\omega_f(I)<\epsilon,l(I)表示区间长度 f(x)在区间X上有定义,则f(x)X上一致连续ϵ>0,δ>0,s.t.对任意闭子区间IX,只要l(I)<δ,都有ωf(I)<ϵ,l(I)表示区间长度.

  • 对于一致连续的另一个等价刻画是这样的:

    f ( x ) 在区间 I 上一致连续    ⟺    ∀ { x n 1 } , { x n 2 } ⊂ I , 只要 x n 1 − x n 2 → 0 , n → + ∞ 就有 f ( x n 1 ) − f ( x n 2 ) → 0 ( n → ∞ ) f(x)在区间I上一致连续\iff\\\forall \{x_{n1}\},\{x_{n2}\}\sub I,只要x_{n1}-x_{n2}\rightarrow 0,n\rightarrow +\infty\\就有f(x_{n1})-f(x_{n2})\rightarrow 0(n\rightarrow \infty) f(x)在区间I上一致连续{xn1},{xn2}I,只要xn1xn20,n+就有f(xn1)f(xn2)0(n).

    • 注:这个证明也不复杂,对于右推左考虑反证法
  • 例: 若 f ( x ) 在 [ a , c ] , [ c , b ] 上一致连续,那么 f ( x ) 在 [ a , b ] 上也一致连续 证明:只要考虑 x 1 ∈ [ a , c ] , x 2 ∈ [ c , b ] 的情况: ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ∣ f ( x 1 ) − f ( c ) ∣ + ∣ f ( x 2 ) − f ( c ) ∣ , 得证 若f(x)在[a,c],[c,b]上一致连续,那么f(x)在[a,b]上也一致连续\\证明:只要考虑x_1\in[a,c],x_2\in[c,b]的情况:\\|f(x_1)-f(x_2)|\leq|f(x_1)-f(c)|+|f(x_2)-f(c)|,得证 f(x)[a,c],[c,b]上一致连续,那么f(x)[a,b]上也一致连续证明:只要考虑x1[a,c],x2[c,b]的情况:f(x1)f(x2)f(x1)f(c)+f(x2)f(c),得证.

    • 注意:此处使用的绝对值不等式之后还会多次使用。事实上,在证明与一致连续相关的结论时,这是一个很好的工具
  • 例: f ( x ) 在有穷开区间 ( a , b ) 上一致连续,那么 f ( x ) 在 ( a , b ) 上有界 f(x)在有穷开区间(a,b)上一致连续,那么f(x)在(a,b)上有界 f(x)在有穷开区间(a,b)上一致连续,那么f(x)(a,b)上有界

    不想打字X2

    • 注:这里采取分类讨论的思想,因为在闭区间上函数有界很好说明,
  • 闭区间有限开覆盖定理:以及Cantor定理的互推(较繁琐)

  • 定理: 设 f ( x ) 在有穷开区间 ( a , b ) 上连续, 则 f ( x ) 在 ( a , b ) 上一致连续的充要条件是 lim ⁡ x → a + f ( x ) 与 lim ⁡ x → b − f ( x ) 都存在 设f(x)在有穷开区间(a,b)上连续,\\则f(x)在(a,b)上一致连续的充要条件是\\\lim_{x\rightarrow a^+}f(x)与\lim_{x\rightarrow b^-}f(x)都存在 f(x)在有穷开区间(a,b)上连续,f(x)(a,b)上一致连续的充要条件是limxa+f(x)limxbf(x)都存在.

    • 如果将有穷区间改为无穷区间,那么必要性不再成立,但是充分性依然成立。
  • 最后介绍一个非常有用的证函数在某区间一致连续的方法:

函数在某个区间内一致连续的充分条件是在区间内其导数有界。

证明:
由拉格朗日中值定理,有:
f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) ∴ ∣ f ( x 1 ) − f ( x 2 ) ∣ ≤ ∣ M ( x 1 − x 2 ) , f 在区间上莱普西斯连续,    ⟹    f 在区间上一致连续 f(x_1)-f(x_2)=f'(\xi) (x_1-x_2)\newline \therefore |f(x_1)-f(x_2)|\leq |M (x_1-x_2),f在区间上莱普西斯连续,\newline \implies f 在区间上一致连续 f(x1)f(x2)=f(ξ)(x1x2)f(x1)f(x2)M(x1x2),f在区间上莱普西斯连续,f在区间上一致连续

  • 这个定理在证明函数一致连续的方便之处在于:对于一个函数,观察其导数有界与否是简单的,但是按照原定义证明一致连续往往比较复杂。
  • 例题: 证: f ( x ) = 1 x sin ⁡ 1 x 在 [ 1 , + ∞ ] 一致连续 f ′ ( x ) = − 1 x cos ⁡ 1 x − sin ⁡ 1 x x 2 ∣ f ′ ( x ) ∣ ≤ ∣ 1 x 3 + 1 x 2 ∣ ≤ 2 , 即 f ′ ( x ) 有界,得证 . 证:f(x)=\frac{1}{x}\sin \frac{1}{x}在[1,+\infty]一致连续\newline f'(x)=\frac{-\frac{1}{x}\cos\frac{1}{x}-\sin\frac{1}{x}}{x^2}\newline |f'(x)|\leq |\frac{1}{x^3}+\frac{1}{x^2}|\leq 2,即f'(x)有界,得证. 证:f(x)=x1sinx1[1,+]一致连续f(x)=x2x1cosx1sinx1f(x)x31+x212,f(x)有界,得证.
  • 6
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 数学分析中的典型问题与方法是一本经典的教材,其第三版是在前两版的基础上进行了更新与完善。本书主要介绍了数学分析中的一些典型问题和解题方法。 这本书首先介绍了实数系统与数列的收敛性理论。通过引入实数系统以及极限和收敛的概念,使读者对数学分析的基本思想有了初步的认识。在这一部分,书中详细地介绍了实数的性质、上确界和下确界的概念,以及数列的极限和收敛性的判定方法。 接下来,本书介绍了实函数的连续性一致连续性理论。通过讨论函数的极限、连续性一致连续性,读者可以更深入地理解实函数的性质和特点。书中还详细介绍了连续函数的性质,如介值定理、零点定理等等,以及一致连续函数的Cauchy准则和一致收敛的性质。 此外,书中还包括了曲线积分和曲面积分的内容。通过讨论路径积分和曲面积分的定义、计算方法以及基本定理,读者可以初步了解这些在数学分析中常见的问题和方法。 最后,本书还附带了一些习题,供读者巩固所学的知识。这些习题涵盖了书中的各个章节,旨在帮助读者更好地理解和掌握书中的内容。 总的来说,数学分析中的典型问题与方法pdf第三版是一本内容丰富、观点明确的教材。通过学习这本教材,读者可以系统地了解数学分析的基本理论和解题方法,为进一步研究和应用数学领域打下坚实的基础。 ### 回答2: 《数学分析中的典型问题与方法》是一本非常经典的数学分析教材,它的第三版是指最新一版的修订版本。该教材主要包含了数学分析中的许多典型问题和解决方法,帮助学生深入理解和应用数学分析的基本概念和原理。 该教材主要涵盖了函数、极限、连续性、导数、积分等重要内容。它以清晰、严谨的语言,结合大量的例题和习题,引导读者逐步学习和掌握数学分析的基本理论和方法。 该教材的第三版相对于之前版本进行了一些修订和更新。在内容上,它可能增加了一些新的讲解和例题,也有可能对一些难点和易错点进行了重点强调和讲解。在形式上,它可能进行了版面设计的调整和优化,以提高学习者的阅读体验。 读者使用该教材,可以通过系统学习和理解其中的问题和方法,逐渐培养分析问题和解决问题的能力。同时,通过解答教材中的习题,可以加深对所学内容的理解和掌握,提高数学分析的解题能力。 总结起来,《数学分析中的典型问题与方法》第三版是一本经典的数学分析教材,它全面覆盖了数学分析的基本概念与原理。读者通过学习该教材,可以掌握数学分析的基本理论和方法,提高解题能力,为深入学习和应用数学分析打下坚实的基础。 ### 回答3: 《数学分析中的典型问题与方法》是一本经典的数学分析教材,第三版相比前两版在内容和方法上有了进一步的完善和更新。 该教材涵盖了数学分析的基本概念和理论,包括实数与数列、函数与极限、连续与导数、积分与微分等内容。这些基础理论为后续高等数学和数学分析的学习打下了坚实的基础。 除了基础理论的讲解外,教材还特别注重应用问题的解析和方法的探讨。其中包括极值问题、曲线的拐点与渐近线、曲线的弧长与曲率、曲线积分与格林公式、线积分与斯托克斯公式等。这些典型问题和方法的讲解通过具体的例题和详细的步骤,帮助读者理解和掌握分析问题的思路和方法。 教材注重理论和实践的结合,在每个章节末尾都提供了大量的习题,既有基础的计算题,也有应用题和证明题,同时还有一些拓展题目,提供了多样化的练习和挑战。 值得一提的是,第三版在排版和图表方面进行了优化和改进,增添了更多的图示和示意图,使得抽象的数学理论更加直观和易于理解。 总之,《数学分析中的典型问题与方法》第三版是一本权威且经典的数学教材,对于数学分析的学习者来说是一本不可或缺的参考书。无论是对于理论的学习,还是对于典型问题和方法的应用,都有很大的帮助和指导作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值