S&P_04_常见随机变量(二项式)

第三章回顾 

随机变量引入的目的是:将随机试验的结果数量化,从而可以用 简洁的数学语言描述繁杂的随机问题,同时提高处理随机问题的效率。随机变量的 引入可以说是概率论发展中的一个重要的里程碑。

随机变量可分为散列型随机变量,连续型随机变量和非离散非连续: 

  • 如果随机变量 X 所有可能的取值是有限或可列多个,则称为离散型随机变量, 则其分布可表示为:

    

  • 连续型随机变量

     

X是随机变量,这里的x是属于R的实数。 

f(x)是密度函数=P(X<=x),即 f(t)。

F(x)是分布函数,。 f(t)(密度函数)从-∞到+∞求积分=1。数学含义是概率(-∞,+∞)在是1.

 

常见分布:

二项分布 E(X) = np, D(X) = np(1-p)

泊松分布 E(X)=λ,D(X)=λ

均匀分布 E(X) = (a+b)/2, D(X) = (b-a)^2/12

指数分布 E(X)=1/λ,D(X)=1/λ^2

标准正太分布 E(X)=0, D(X)=1

 正太分布的密度函数的典型特征

  • μ是曲线的对称点,它决定曲线的中心位置,称为位置参数
  • 函数f(x)在μ处达到最大值。f(μ)=1/(2∏*σ)0.5
  • 参数σ值越小,曲线显瘦,反之曲线显胖。称参数σ为形状参数
  • 当x趋于+-无穷时,limf(x)=0。
  • 当μ=0,σ=1时,函数分布为标准正态分布。

 

 随机变量可分为连续型随机变量,散列型随机变量和非离散非连续: 

3. 1连续型随机变量:

 

 

注:不可导的值是多少就是多少。可导必连续。

  

 

解:

a) x 从-∞到+∞,,从0到1,f(x)= ,x属于其他时,f(x)=0。=》 k=2/3

  即 

b)  F(x)是X的分布函数,是事件(X<=x)的概率,称为X分布函数。F(x)是对f(x)求积分。

 

c) P{a<X<b} = F(b) - F(a)

 

3.2 离散型随机变量

3.3 非离散非连续型随机变量

 

第四章 常见随机变量

 

1. 均匀分布:它的密度函数是一个常数,在区间内所有的点都是等可能的。随机变量在[a,b]区间内一个小区间的概率,只跟这个小区间的长度有关,而跟小区间的位置没有关系

 

 

2.二项分布

将参数为 p 的伯努利试验独立地重复n次,定义随机变量 X 为试验成功的次数,则 X 的分布律为:

 

C(nk)表示抽出点数不同位置的组合。

 

3. 指数分布与几何分布:

 

几何分布的无记忆性是:每次的概率都是独立的,与前面的概率无关。

 

 

θ 的含义:x越大的地方就衰减的越厉害。(越长寿的概率越小,设备使用寿命的概率)

 

可以验证,指数分布也满足无记忆性的条件概率关系。而且指数分布是唯一具有无记忆 性的连续型分布。同时,几何分布是唯一具有无记忆性的离散型分布

 

4. 正太分布

  

 

所有面积和等于汽车频率和,亦等于1:∑fi/δi × δi(i=1->n)= ∑fi = 1。

 

μ=0 , =1时的正态分布,即 X ~ N(0,1),称为标准正态分布。 

 

Ø(x)为密度函数

Φ(x)为分布函数

 

 Φ(.028) = 0.6103

  Φ(-0.74)=1- Φ(0.74)=1-0.7703=0.2297

  

正太分布是密度函数:

1. 密度函数是非负的。

2. 

 

  

 

  

 右图中密度函数的黑色面积部分就是这个分布函数的这点的值(X<=x,的概率)。

 

转载于:https://www.cnblogs.com/tlfox2006/p/9430388.html

### 两阶段鲁棒优化算法及其实现 #### 背景介绍 两阶段鲁棒优化是一种解决不确定性决策问题的方法,其核心在于通过构建一个适应不确定性的模型来找到最优解。这种方法通常用于处理具有多级决策结构的问题,在第一阶段做出不可调整的决策,而在第二阶段基于实际发生的不确定性参数进行可调决策。 Zengbo等人提出的框架主要关注于如何设计高效的求解策略以及简化复杂度较高的鲁棒优化问题[^1]。该研究领域的一个重要方向是如何利用线性规划、混合整数规划以及其他数值技术来近似或精确求解此类问题。 #### 数学建模基础 两阶段鲁棒优化可以形式化描述如下: 设 \( \mathbf{x} \in X \subseteq \mathbb{R}^n \) 表示第一阶段变量集合,\( \mathbf{y}(u) \in Y(u) \subseteq \mathbb{R}^m \) 是依赖于不确定性向量 \( u \in U \subset \mathbb{R}^p \) 的第二阶段变量,则目标函数和约束条件表示为: \[ \min_{\mathbf{x}, \{\mathbf{y}(u)\}} c^\top \mathbf{x} + \sup_{u \in U} q^\top \mathbf{y}(u), \] 其中, - \( c, q \): 成本系数; - \( A\mathbf{x} + B\mathbf{y}(u) \leq b \), 对任意 \( u \in U \),需满足约束关系; 上述模型中的关键挑战之一是对抗最坏情况下的不确定性集 \( U \)[^2]。 #### 算法实现思路 一种常见的做法是采用列与约束生成 (Column-and-Constrant Generation, CCG) 方法来进行迭代计算。以下是其实现的核心逻辑: ```python import gurobipy as gp from guorbipy import GRB def robust_optimization_two_stage(): model = gp.Model() # 定义第一阶段变量 x 和相关成本项 x_vars = {} for i in range(n): x_vars[i] = model.addVar(vtype=GRB.CONTINUOUS, name=f"x[{i}]") # 添加第一阶段的目标函数部分 obj_first_stage = sum(c[i]*x_vars[i] for i in range(n)) # 初始化第二阶段子问题并设置上下界更新机制... while not converged: # 解决主问题得到当前候选方案 # 构造并求解对应的Worst-case Subproblem # 更新割平面或者加入新的场景约束 return optimal_solution_x_and_y_values ``` 此代码片段仅作为伪代码展示基本流程,并未完全展开细节。具体实现还需考虑更多边界情形及性能改进措施[^3]。 #### 讨论与扩展 对于大规模实例而言,单纯依靠CCG可能效率低下,因此引入分解技术和启发式搜索成为必要补充手段。此外,当面对连续型不确定性区域时,还可以尝试应用自适应采样或其他随机逼近技巧进一步提升效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值